Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the product of the complex numbers [tex]\( z \)[/tex] and [tex]\( w \)[/tex], we need to use the properties of complex numbers in polar form.
### Step-by-Step Solution
1. Identify the magnitudes and angles of [tex]\( z \)[/tex] and [tex]\( w \)[/tex]:
- For [tex]\( z \)[/tex]:
- Magnitude: [tex]\( |z| = 38 \)[/tex]
- Angle: [tex]\( \arg(z) = \frac{\pi}{8} \)[/tex]
- For [tex]\( w \)[/tex]:
- Magnitude: [tex]\( |w| = 2 \)[/tex]
- Angle: [tex]\( \arg(w) = \frac{\pi}{16} \)[/tex]
2. Calculate the magnitude of the product [tex]\( zw \)[/tex]:
- The magnitude of the product of two complex numbers is the product of their magnitudes:
[tex]\[ |zw| = |z| \cdot |w| = 38 \cdot 2 = 76 \][/tex]
3. Calculate the angle of the product [tex]\( zw \)[/tex]:
- The angle of the product of two complex numbers is the sum of their angles:
[tex]\[ \arg(zw) = \arg(z) + \arg(w) = \frac{\pi}{8} + \frac{\pi}{16} \][/tex]
- To add these fractions, find a common denominator (which is 16):
[tex]\[ \frac{\pi}{8} = \frac{2\pi}{16} \][/tex]
[tex]\[ \frac{2\pi}{16} + \frac{\pi}{16} = \frac{3\pi}{16} \][/tex]
4. Express [tex]\( zw \)[/tex] in its final form:
[tex]\[ zw = 76 \left( \cos \left( \frac{3\pi}{16} \right) + i \sin \left( \frac{3\pi}{16} \right) \right) \][/tex]
Therefore, the product [tex]\( zw \)[/tex] is:
[tex]\[ 76 \left( \cos \left( \frac{3\pi}{16} \right) + i \sin \left( \frac{3\pi}{16} \right) \right) \][/tex]
Hence, the correct answer is:
[tex]\[ \boxed{76 \left( \cos \left( \frac{3\pi}{16} \right) + i \sin \left( \frac{3\pi}{16} \right) \right)} \][/tex]
### Step-by-Step Solution
1. Identify the magnitudes and angles of [tex]\( z \)[/tex] and [tex]\( w \)[/tex]:
- For [tex]\( z \)[/tex]:
- Magnitude: [tex]\( |z| = 38 \)[/tex]
- Angle: [tex]\( \arg(z) = \frac{\pi}{8} \)[/tex]
- For [tex]\( w \)[/tex]:
- Magnitude: [tex]\( |w| = 2 \)[/tex]
- Angle: [tex]\( \arg(w) = \frac{\pi}{16} \)[/tex]
2. Calculate the magnitude of the product [tex]\( zw \)[/tex]:
- The magnitude of the product of two complex numbers is the product of their magnitudes:
[tex]\[ |zw| = |z| \cdot |w| = 38 \cdot 2 = 76 \][/tex]
3. Calculate the angle of the product [tex]\( zw \)[/tex]:
- The angle of the product of two complex numbers is the sum of their angles:
[tex]\[ \arg(zw) = \arg(z) + \arg(w) = \frac{\pi}{8} + \frac{\pi}{16} \][/tex]
- To add these fractions, find a common denominator (which is 16):
[tex]\[ \frac{\pi}{8} = \frac{2\pi}{16} \][/tex]
[tex]\[ \frac{2\pi}{16} + \frac{\pi}{16} = \frac{3\pi}{16} \][/tex]
4. Express [tex]\( zw \)[/tex] in its final form:
[tex]\[ zw = 76 \left( \cos \left( \frac{3\pi}{16} \right) + i \sin \left( \frac{3\pi}{16} \right) \right) \][/tex]
Therefore, the product [tex]\( zw \)[/tex] is:
[tex]\[ 76 \left( \cos \left( \frac{3\pi}{16} \right) + i \sin \left( \frac{3\pi}{16} \right) \right) \][/tex]
Hence, the correct answer is:
[tex]\[ \boxed{76 \left( \cos \left( \frac{3\pi}{16} \right) + i \sin \left( \frac{3\pi}{16} \right) \right)} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.