Answered

Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Consider the following quadratic function: [tex]f(x) = 3x^2 - 18x + 24[/tex]. Determine:

a) The [tex]\(y\)[/tex]-intercept: (1 mark)

b) The [tex]\(x\)[/tex]-intercepts: (2 marks)

c) The equation of the axis of symmetry: (1 mark)

d) The vertex: (3 marks)

e) Sketch the graph of this function. Label key points. (2 marks)

Sagot :

Let's systematically solve the provided quadratic function [tex]\( f(x) = 3x^2 - 18x + 24 \)[/tex] step-by-step:

### a) Finding the y-intercept:
The y-intercept of a function is the point at which the graph crosses the y-axis. This occurs when [tex]\( x = 0 \)[/tex].

[tex]\[ f(0) = 3(0)^2 - 18(0) + 24 = 24 \][/tex]

So, the y-intercept is:
[tex]\[ y = 24 \][/tex]

### b) Finding the x-intercepts:
The x-intercepts of a function are the points at which the graph crosses the x-axis. This occurs when [tex]\( f(x) = 0 \)[/tex], i.e., we need to solve the quadratic equation:
[tex]\[ 3x^2 - 18x + 24 = 0 \][/tex]

We can use the quadratic formula:
[tex]\[ x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a} \][/tex]

Where [tex]\( a = 3 \)[/tex], [tex]\( b = -18 \)[/tex], and [tex]\( c = 24 \)[/tex]. First, compute the discriminant ([tex]\( \Delta \)[/tex]):
[tex]\[ \Delta = b^2 - 4ac \][/tex]

[tex]\[ \Delta = (-18)^2 - 4(3)(24) \][/tex]
[tex]\[ \Delta = 324 - 288 \][/tex]
[tex]\[ \Delta = 36 \][/tex]

Since the discriminant is positive, there are two real roots:
[tex]\[ x_1 = \frac{{-b + \sqrt{\Delta}}}{2a} \][/tex]
[tex]\[ x_1 = \frac{{18 + \sqrt{36}}}{6} \][/tex]
[tex]\[ x_1 = \frac{{18 + 6}}{6} \][/tex]
[tex]\[ x_1 = 4 \][/tex]

[tex]\[ x_2 = \frac{{-b - \sqrt{\Delta}}}{2a} \][/tex]
[tex]\[ x_2 = \frac{{18 - \sqrt{36}}}{6} \][/tex]
[tex]\[ x_2 = \frac{{18 - 6}}{6} \][/tex]
[tex]\[ x_2 = 2 \][/tex]

So, the x-intercepts are:
[tex]\[ x = 4 \][/tex] and [tex]\[ x = 2 \][/tex]

### c) Finding the equation of the axis of symmetry:
The axis of symmetry for a quadratic function in the form [tex]\( ax^2 + bx + c \)[/tex] is given by:
[tex]\[ x = -\frac{b}{2a} \][/tex]

Substitute [tex]\( a = 3 \)[/tex] and [tex]\( b = -18 \)[/tex]:
[tex]\[ x = -\frac{-18}{2(3)} \][/tex]
[tex]\[ x = \frac{18}{6} \][/tex]
[tex]\[ x = 3 \][/tex]

So, the equation of the axis of symmetry is:
[tex]\[ x = 3 \][/tex]

### d) Finding the vertex:
The vertex form of a quadratic function [tex]\( f(x) = a(x-h)^2 + k \)[/tex] and the vertex [tex]\((h, k)\)[/tex] can be found using the point on the axis of symmetry.

We already found [tex]\( x = 3 \)[/tex] (the x-coordinate of the vertex). Now, substitute [tex]\( x = 3 \)[/tex] into the original function to find the y-coordinate:

[tex]\[ f(3) = 3(3)^2 - 18(3) + 24 \][/tex]
[tex]\[ f(3) = 3(9) - 54 + 24 \][/tex]
[tex]\[ f(3) = 27 - 54 + 24 \][/tex]
[tex]\[ f(3) = -3 \][/tex]

So, the vertex is:
[tex]\[ (3, -3) \][/tex]

### e) Sketching the graph of the function:
To sketch the graph of [tex]\( f(x) = 3x^2 - 18x + 24 \)[/tex]:
1. Identify and plot the y-intercept: [tex]\((0, 24)\)[/tex]
2. Identify and plot the x-intercepts: [tex]\((2, 0)\)[/tex] and [tex]\((4, 0)\)[/tex]
3. Identify and plot the vertex: [tex]\((3, -3)\)[/tex]
4. Draw the axis of symmetry: Vertical line through [tex]\(x = 3\)[/tex]

The graph is a parabola opening upwards (since the coefficient of [tex]\( x^2 \)[/tex] is positive) with the vertex as the lowest point.

### Graph:

```
|
25| X
20|
15|
10|
5|
0|----X--------X-------------------
2 3 4
-5| X Vertex(3, -3)

///(Parabola sketch)
```

Label key points:
- [tex]\( (0, 24) \)[/tex] as y-intercept
- [tex]\( (2, 0) \)[/tex] and [tex]\( (4, 0) \)[/tex] as x-intercepts
- [tex]\( (3, -3) \)[/tex] as vertex, with the axis of symmetry as [tex]\( x = 3 \)[/tex]

This careful plotting covers all necessary points and shapes required for an effective sketch.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.