Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which table has a constant of proportionality between [tex]\(y\)[/tex] and [tex]\(x\)[/tex] of [tex]\(\frac{3}{4}\)[/tex], we need to check if the ratio [tex]\(\frac{y}{x}\)[/tex] is consistently [tex]\(\frac{3}{4}\)[/tex] for all pairs [tex]\((x, y)\)[/tex] in the table. Let’s check each table step-by-step:
Table A:
[tex]\[ \begin{array}{|cc|} \hline x & y \\ \hline 8 & 6 \\ 9 & \frac{27}{4} \\ 10 & \frac{15}{2} \\ \hline \end{array} \][/tex]
1. For [tex]\( (8, 6) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{6}{8} = \frac{3}{4} \][/tex]
2. For [tex]\( (9, \frac{27}{4}) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{\frac{27}{4}}{9} = \frac{27}{4} \times \frac{1}{9} = \frac{27}{36} = \frac{3}{4} \][/tex]
3. For [tex]\( (10, \frac{15}{2}) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{\frac{15}{2}}{10} = \frac{15}{2} \times \frac{1}{10} = \frac{15}{20} = \frac{3}{4} \][/tex]
Since each [tex]\(\frac{y}{x}\)[/tex] value in Table A is [tex]\(\frac{3}{4}\)[/tex], Table A has a constant proportionality of [tex]\(\frac{3}{4}\)[/tex].
Table B:
[tex]\[ \begin{array}{|cc|} \hline x & y \\ \hline 3 & \frac{3}{4} \\ 4 & 1 \\ 5 & \frac{5}{4} \\ \hline \end{array} \][/tex]
1. For [tex]\( (3, \frac{3}{4}) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{\frac{3}{4}}{3} = \frac{3}{4} \times \frac{1}{3} = \frac{3}{12} = \frac{1}{4} \][/tex]
2. For [tex]\( (4, 1) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{1}{4} = \frac{1}{4} \][/tex]
3. For [tex]\( (5, \frac{5}{4}) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{\frac{5}{4}}{5} = \frac{5}{4} \times \frac{1}{5} = \frac{5}{20} = \frac{1}{4} \][/tex]
Since each [tex]\(\frac{y}{x}\)[/tex] value in Table B is [tex]\(\frac{1}{4}\)[/tex], Table B does not have a constant proportionality of [tex]\(\frac{3}{4}\)[/tex].
Table C:
[tex]\[ \begin{array}{|cc|} \hline x & y \\ \hline 10 & \frac{19}{2} \\ 11 & \frac{41}{4} \\ 12 & 11 \\ \hline \end{array} \][/tex]
1. For [tex]\( (10, \frac{19}{2}) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{\frac{19}{2}}{10} = \frac{19}{2} \times \frac{1}{10} = \frac{19}{20} \][/tex]
2. For [tex]\( (11, \frac{41}{4}) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{\frac{41}{4}}{11} = \frac{41}{4} \times \frac{1}{11} = \frac{41}{44} \][/tex]
3. For [tex]\( (12, 11) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{11}{12} = \frac{11}{12} \][/tex]
Since each [tex]\(\frac{y}{x}\)[/tex] value in Table C is different and not equal to [tex]\(\frac{3}{4}\)[/tex], Table C does not have a constant proportionality of [tex]\(\frac{3}{4}\)[/tex].
Given this analysis, the table that has a constant of proportionality between [tex]\(y\)[/tex] and [tex]\(x\)[/tex] of [tex]\(\frac{3}{4}\)[/tex] is:
[tex]\[ \boxed{A} \][/tex]
Table A:
[tex]\[ \begin{array}{|cc|} \hline x & y \\ \hline 8 & 6 \\ 9 & \frac{27}{4} \\ 10 & \frac{15}{2} \\ \hline \end{array} \][/tex]
1. For [tex]\( (8, 6) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{6}{8} = \frac{3}{4} \][/tex]
2. For [tex]\( (9, \frac{27}{4}) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{\frac{27}{4}}{9} = \frac{27}{4} \times \frac{1}{9} = \frac{27}{36} = \frac{3}{4} \][/tex]
3. For [tex]\( (10, \frac{15}{2}) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{\frac{15}{2}}{10} = \frac{15}{2} \times \frac{1}{10} = \frac{15}{20} = \frac{3}{4} \][/tex]
Since each [tex]\(\frac{y}{x}\)[/tex] value in Table A is [tex]\(\frac{3}{4}\)[/tex], Table A has a constant proportionality of [tex]\(\frac{3}{4}\)[/tex].
Table B:
[tex]\[ \begin{array}{|cc|} \hline x & y \\ \hline 3 & \frac{3}{4} \\ 4 & 1 \\ 5 & \frac{5}{4} \\ \hline \end{array} \][/tex]
1. For [tex]\( (3, \frac{3}{4}) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{\frac{3}{4}}{3} = \frac{3}{4} \times \frac{1}{3} = \frac{3}{12} = \frac{1}{4} \][/tex]
2. For [tex]\( (4, 1) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{1}{4} = \frac{1}{4} \][/tex]
3. For [tex]\( (5, \frac{5}{4}) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{\frac{5}{4}}{5} = \frac{5}{4} \times \frac{1}{5} = \frac{5}{20} = \frac{1}{4} \][/tex]
Since each [tex]\(\frac{y}{x}\)[/tex] value in Table B is [tex]\(\frac{1}{4}\)[/tex], Table B does not have a constant proportionality of [tex]\(\frac{3}{4}\)[/tex].
Table C:
[tex]\[ \begin{array}{|cc|} \hline x & y \\ \hline 10 & \frac{19}{2} \\ 11 & \frac{41}{4} \\ 12 & 11 \\ \hline \end{array} \][/tex]
1. For [tex]\( (10, \frac{19}{2}) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{\frac{19}{2}}{10} = \frac{19}{2} \times \frac{1}{10} = \frac{19}{20} \][/tex]
2. For [tex]\( (11, \frac{41}{4}) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{\frac{41}{4}}{11} = \frac{41}{4} \times \frac{1}{11} = \frac{41}{44} \][/tex]
3. For [tex]\( (12, 11) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{11}{12} = \frac{11}{12} \][/tex]
Since each [tex]\(\frac{y}{x}\)[/tex] value in Table C is different and not equal to [tex]\(\frac{3}{4}\)[/tex], Table C does not have a constant proportionality of [tex]\(\frac{3}{4}\)[/tex].
Given this analysis, the table that has a constant of proportionality between [tex]\(y\)[/tex] and [tex]\(x\)[/tex] of [tex]\(\frac{3}{4}\)[/tex] is:
[tex]\[ \boxed{A} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.