Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine which table has a constant of proportionality between [tex]\(y\)[/tex] and [tex]\(x\)[/tex] of [tex]\(\frac{3}{4}\)[/tex], we need to check if the ratio [tex]\(\frac{y}{x}\)[/tex] is consistently [tex]\(\frac{3}{4}\)[/tex] for all pairs [tex]\((x, y)\)[/tex] in the table. Let’s check each table step-by-step:
Table A:
[tex]\[ \begin{array}{|cc|} \hline x & y \\ \hline 8 & 6 \\ 9 & \frac{27}{4} \\ 10 & \frac{15}{2} \\ \hline \end{array} \][/tex]
1. For [tex]\( (8, 6) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{6}{8} = \frac{3}{4} \][/tex]
2. For [tex]\( (9, \frac{27}{4}) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{\frac{27}{4}}{9} = \frac{27}{4} \times \frac{1}{9} = \frac{27}{36} = \frac{3}{4} \][/tex]
3. For [tex]\( (10, \frac{15}{2}) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{\frac{15}{2}}{10} = \frac{15}{2} \times \frac{1}{10} = \frac{15}{20} = \frac{3}{4} \][/tex]
Since each [tex]\(\frac{y}{x}\)[/tex] value in Table A is [tex]\(\frac{3}{4}\)[/tex], Table A has a constant proportionality of [tex]\(\frac{3}{4}\)[/tex].
Table B:
[tex]\[ \begin{array}{|cc|} \hline x & y \\ \hline 3 & \frac{3}{4} \\ 4 & 1 \\ 5 & \frac{5}{4} \\ \hline \end{array} \][/tex]
1. For [tex]\( (3, \frac{3}{4}) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{\frac{3}{4}}{3} = \frac{3}{4} \times \frac{1}{3} = \frac{3}{12} = \frac{1}{4} \][/tex]
2. For [tex]\( (4, 1) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{1}{4} = \frac{1}{4} \][/tex]
3. For [tex]\( (5, \frac{5}{4}) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{\frac{5}{4}}{5} = \frac{5}{4} \times \frac{1}{5} = \frac{5}{20} = \frac{1}{4} \][/tex]
Since each [tex]\(\frac{y}{x}\)[/tex] value in Table B is [tex]\(\frac{1}{4}\)[/tex], Table B does not have a constant proportionality of [tex]\(\frac{3}{4}\)[/tex].
Table C:
[tex]\[ \begin{array}{|cc|} \hline x & y \\ \hline 10 & \frac{19}{2} \\ 11 & \frac{41}{4} \\ 12 & 11 \\ \hline \end{array} \][/tex]
1. For [tex]\( (10, \frac{19}{2}) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{\frac{19}{2}}{10} = \frac{19}{2} \times \frac{1}{10} = \frac{19}{20} \][/tex]
2. For [tex]\( (11, \frac{41}{4}) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{\frac{41}{4}}{11} = \frac{41}{4} \times \frac{1}{11} = \frac{41}{44} \][/tex]
3. For [tex]\( (12, 11) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{11}{12} = \frac{11}{12} \][/tex]
Since each [tex]\(\frac{y}{x}\)[/tex] value in Table C is different and not equal to [tex]\(\frac{3}{4}\)[/tex], Table C does not have a constant proportionality of [tex]\(\frac{3}{4}\)[/tex].
Given this analysis, the table that has a constant of proportionality between [tex]\(y\)[/tex] and [tex]\(x\)[/tex] of [tex]\(\frac{3}{4}\)[/tex] is:
[tex]\[ \boxed{A} \][/tex]
Table A:
[tex]\[ \begin{array}{|cc|} \hline x & y \\ \hline 8 & 6 \\ 9 & \frac{27}{4} \\ 10 & \frac{15}{2} \\ \hline \end{array} \][/tex]
1. For [tex]\( (8, 6) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{6}{8} = \frac{3}{4} \][/tex]
2. For [tex]\( (9, \frac{27}{4}) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{\frac{27}{4}}{9} = \frac{27}{4} \times \frac{1}{9} = \frac{27}{36} = \frac{3}{4} \][/tex]
3. For [tex]\( (10, \frac{15}{2}) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{\frac{15}{2}}{10} = \frac{15}{2} \times \frac{1}{10} = \frac{15}{20} = \frac{3}{4} \][/tex]
Since each [tex]\(\frac{y}{x}\)[/tex] value in Table A is [tex]\(\frac{3}{4}\)[/tex], Table A has a constant proportionality of [tex]\(\frac{3}{4}\)[/tex].
Table B:
[tex]\[ \begin{array}{|cc|} \hline x & y \\ \hline 3 & \frac{3}{4} \\ 4 & 1 \\ 5 & \frac{5}{4} \\ \hline \end{array} \][/tex]
1. For [tex]\( (3, \frac{3}{4}) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{\frac{3}{4}}{3} = \frac{3}{4} \times \frac{1}{3} = \frac{3}{12} = \frac{1}{4} \][/tex]
2. For [tex]\( (4, 1) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{1}{4} = \frac{1}{4} \][/tex]
3. For [tex]\( (5, \frac{5}{4}) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{\frac{5}{4}}{5} = \frac{5}{4} \times \frac{1}{5} = \frac{5}{20} = \frac{1}{4} \][/tex]
Since each [tex]\(\frac{y}{x}\)[/tex] value in Table B is [tex]\(\frac{1}{4}\)[/tex], Table B does not have a constant proportionality of [tex]\(\frac{3}{4}\)[/tex].
Table C:
[tex]\[ \begin{array}{|cc|} \hline x & y \\ \hline 10 & \frac{19}{2} \\ 11 & \frac{41}{4} \\ 12 & 11 \\ \hline \end{array} \][/tex]
1. For [tex]\( (10, \frac{19}{2}) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{\frac{19}{2}}{10} = \frac{19}{2} \times \frac{1}{10} = \frac{19}{20} \][/tex]
2. For [tex]\( (11, \frac{41}{4}) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{\frac{41}{4}}{11} = \frac{41}{4} \times \frac{1}{11} = \frac{41}{44} \][/tex]
3. For [tex]\( (12, 11) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{11}{12} = \frac{11}{12} \][/tex]
Since each [tex]\(\frac{y}{x}\)[/tex] value in Table C is different and not equal to [tex]\(\frac{3}{4}\)[/tex], Table C does not have a constant proportionality of [tex]\(\frac{3}{4}\)[/tex].
Given this analysis, the table that has a constant of proportionality between [tex]\(y\)[/tex] and [tex]\(x\)[/tex] of [tex]\(\frac{3}{4}\)[/tex] is:
[tex]\[ \boxed{A} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.