Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's analyze the problem step-by-step to find the probabilities and draw the correct conclusion.
1. Determine the probability that an adult has side effects:
- The total number of adults is 50.
- The number of adults who experienced side effects is 7.
- The probability [tex]\( P(\text{side effects} \mid \text{adult}) \)[/tex] is calculated as:
[tex]\[ P(\text{side effects} \mid \text{adult}) = \frac{\text{Number of adults with side effects}}{\text{Total number of adults}} = \frac{7}{50} = 0.14 \][/tex]
2. Determine the probability that a child has side effects:
- The total number of children is 50.
- The number of children who experienced side effects is 22.
- The probability [tex]\( P(\text{side effects} \mid \text{child}) \)[/tex] is calculated as:
[tex]\[ P(\text{side effects} \mid \text{child}) = \frac{\text{Number of children with side effects}}{\text{Total number of children}} = \frac{22}{50} = 0.44 \][/tex]
3. Draw the conclusion based on the probabilities:
- The probability of a child having side effects (0.44) is greater than the probability of an adult having side effects (0.14).
- Therefore, we can conclude that children have a much greater chance of having side effects than adults.
So, the correct answer is A:
[tex]\[ P(\text{side effects} \mid \text{child}) = 0.44, \quad P(\text{side effects} \mid \text{adult}) = 0.14 \][/tex]
Conclusion: Children have a much greater chance of having side effects than adults.
1. Determine the probability that an adult has side effects:
- The total number of adults is 50.
- The number of adults who experienced side effects is 7.
- The probability [tex]\( P(\text{side effects} \mid \text{adult}) \)[/tex] is calculated as:
[tex]\[ P(\text{side effects} \mid \text{adult}) = \frac{\text{Number of adults with side effects}}{\text{Total number of adults}} = \frac{7}{50} = 0.14 \][/tex]
2. Determine the probability that a child has side effects:
- The total number of children is 50.
- The number of children who experienced side effects is 22.
- The probability [tex]\( P(\text{side effects} \mid \text{child}) \)[/tex] is calculated as:
[tex]\[ P(\text{side effects} \mid \text{child}) = \frac{\text{Number of children with side effects}}{\text{Total number of children}} = \frac{22}{50} = 0.44 \][/tex]
3. Draw the conclusion based on the probabilities:
- The probability of a child having side effects (0.44) is greater than the probability of an adult having side effects (0.14).
- Therefore, we can conclude that children have a much greater chance of having side effects than adults.
So, the correct answer is A:
[tex]\[ P(\text{side effects} \mid \text{child}) = 0.44, \quad P(\text{side effects} \mid \text{adult}) = 0.14 \][/tex]
Conclusion: Children have a much greater chance of having side effects than adults.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.