Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Certainly! Let's solve the equation [tex]\( 14^{10x} = 11^{x+10} \)[/tex] for [tex]\( x \)[/tex].
1. Take the natural logarithm (ln) of both sides of the equation to facilitate solving for the exponent.
[tex]\[ \ln(14^{10x}) = \ln(11^{x+10}) \][/tex]
2. Apply the logarithmic power rule [tex]\( \ln(a^b) = b \ln(a) \)[/tex] to bring the exponents down:
[tex]\[ 10x \ln(14) = (x + 10) \ln(11) \][/tex]
3. Expand the right-hand side:
[tex]\[ 10x \ln(14) = x \ln(11) + 10 \ln(11) \][/tex]
4. Rearrange the equation to isolate terms involving [tex]\( x \)[/tex] on one side:
[tex]\[ 10x \ln(14) - x \ln(11) = 10 \ln(11) \][/tex]
5. Factor [tex]\( x \)[/tex] out from the left-hand side:
[tex]\[ x (10 \ln(14) - \ln(11)) = 10 \ln(11) \][/tex]
6. Divide both sides by [tex]\( (10 \ln(14) - \ln(11)) \)[/tex] to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{10 \ln(11)}{10 \ln(14) - \ln(11)} \][/tex]
Therefore, the exact solution for [tex]\( x \)[/tex] using natural logarithms is:
[tex]\[ x = \frac{10 \ln(11)}{10 \ln(14) - \ln(11)} \][/tex]
This concludes our detailed, step-by-step solution.
1. Take the natural logarithm (ln) of both sides of the equation to facilitate solving for the exponent.
[tex]\[ \ln(14^{10x}) = \ln(11^{x+10}) \][/tex]
2. Apply the logarithmic power rule [tex]\( \ln(a^b) = b \ln(a) \)[/tex] to bring the exponents down:
[tex]\[ 10x \ln(14) = (x + 10) \ln(11) \][/tex]
3. Expand the right-hand side:
[tex]\[ 10x \ln(14) = x \ln(11) + 10 \ln(11) \][/tex]
4. Rearrange the equation to isolate terms involving [tex]\( x \)[/tex] on one side:
[tex]\[ 10x \ln(14) - x \ln(11) = 10 \ln(11) \][/tex]
5. Factor [tex]\( x \)[/tex] out from the left-hand side:
[tex]\[ x (10 \ln(14) - \ln(11)) = 10 \ln(11) \][/tex]
6. Divide both sides by [tex]\( (10 \ln(14) - \ln(11)) \)[/tex] to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{10 \ln(11)}{10 \ln(14) - \ln(11)} \][/tex]
Therefore, the exact solution for [tex]\( x \)[/tex] using natural logarithms is:
[tex]\[ x = \frac{10 \ln(11)}{10 \ln(14) - \ln(11)} \][/tex]
This concludes our detailed, step-by-step solution.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.