Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's examine the relationship between the coefficients [tex]\(a\)[/tex] and [tex]\(b\)[/tex] in the equation of a limaçon and how this relationship affects the presence of an inner loop.
The general form of a limaçon is given by:
[tex]\[ r = a + b \cos(\theta) \][/tex]
For the limaçon in the given problem:
[tex]\[ r = 3 + 4 \cos(\theta) \][/tex]
we can identify that [tex]\( a = 3 \)[/tex] and [tex]\( b = 4 \)[/tex].
To determine the relationship between [tex]\(a\)[/tex] and [tex]\(b\)[/tex] that dictates the presence of an inner loop, we need to analyze the quotient [tex]\(\frac{a}{b}\)[/tex] and [tex]\(\frac{b}{a}\)[/tex].
First, compute the quotient [tex]\(\frac{a}{b}\)[/tex]:
[tex]\[ \frac{a}{b} = \frac{3}{4} = 0.75 \][/tex]
Next, compute the quotient [tex]\(\frac{b}{a}\)[/tex]:
[tex]\[ \frac{b}{a} = \frac{4}{3} \approx 1.333 \][/tex]
Now, we need to use these quotients to determine the nature of the limaçon. For a limaçon:
- If [tex]\(\frac{a}{b} > 1\)[/tex], the limaçon has no inner loop and is a dimpled limaçon.
- If [tex]\(\frac{b}{a} > 1\)[/tex], the limaçon has an inner loop.
Given the values we obtained:
- [tex]\(\frac{a}{b} = 0.75\)[/tex], which is less than 1.
- [tex]\(\frac{b}{a} = 1.333\)[/tex], which is greater than 1.
Since [tex]\(\frac{b}{a} > 1\)[/tex], this indicates that the curve is a limaçon with an inner loop.
Hence, the correct statement is:
[tex]\[ \text{Because } \frac{b}{a} > 1, \text{ the curve is a limaçon with an inner loop.} \][/tex]
The general form of a limaçon is given by:
[tex]\[ r = a + b \cos(\theta) \][/tex]
For the limaçon in the given problem:
[tex]\[ r = 3 + 4 \cos(\theta) \][/tex]
we can identify that [tex]\( a = 3 \)[/tex] and [tex]\( b = 4 \)[/tex].
To determine the relationship between [tex]\(a\)[/tex] and [tex]\(b\)[/tex] that dictates the presence of an inner loop, we need to analyze the quotient [tex]\(\frac{a}{b}\)[/tex] and [tex]\(\frac{b}{a}\)[/tex].
First, compute the quotient [tex]\(\frac{a}{b}\)[/tex]:
[tex]\[ \frac{a}{b} = \frac{3}{4} = 0.75 \][/tex]
Next, compute the quotient [tex]\(\frac{b}{a}\)[/tex]:
[tex]\[ \frac{b}{a} = \frac{4}{3} \approx 1.333 \][/tex]
Now, we need to use these quotients to determine the nature of the limaçon. For a limaçon:
- If [tex]\(\frac{a}{b} > 1\)[/tex], the limaçon has no inner loop and is a dimpled limaçon.
- If [tex]\(\frac{b}{a} > 1\)[/tex], the limaçon has an inner loop.
Given the values we obtained:
- [tex]\(\frac{a}{b} = 0.75\)[/tex], which is less than 1.
- [tex]\(\frac{b}{a} = 1.333\)[/tex], which is greater than 1.
Since [tex]\(\frac{b}{a} > 1\)[/tex], this indicates that the curve is a limaçon with an inner loop.
Hence, the correct statement is:
[tex]\[ \text{Because } \frac{b}{a} > 1, \text{ the curve is a limaçon with an inner loop.} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.