Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

The dye dilution method is used to measure cardiac output with 6 mg of dye. The dye concentrations, in mg/L, are modeled by [tex]c(t) = 27t e^{-0.9t}, \quad 0 \leq t \leq 10[/tex], where [tex]t[/tex] is measured in seconds. Find the cardiac output. (Hint: Integration by parts is required. Round your answer to four decimal places.)

0.2001 × [tex]L/s[/tex]


Sagot :

To find the cardiac output using the dye dilution method, we are provided with a dye concentration function [tex]\( c(t) = 27t e^{-0.9t} \)[/tex], which models the dye concentration over time [tex]\( t \)[/tex] in seconds. The cardiac output in liters per second is given by [tex]\( 0.2001 \times \int_{0}^{10} c(t) \, dt \)[/tex].

Let's calculate this step by step:

1. Set up the integral:

We need to integrate the given function over the interval from 0 to 10:
[tex]\[ \int_{0}^{10} 27t e^{-0.9t} \, dt. \][/tex]

2. Use integration by parts:

To integrate [tex]\( 27t e^{-0.9t} \)[/tex], we apply integration by parts. The formula for integration by parts is:
[tex]\[ \int u \, dv = uv - \int v \, du, \][/tex]
where [tex]\( u = t \)[/tex] and [tex]\( dv = 27 e^{-0.9t} \, dt \)[/tex].

Differentiate and integrate:
[tex]\[ du = dt, \][/tex]
[tex]\[ v = \int 27 e^{-0.9t} \, dt = 27 \left( -\frac{1}{0.9} e^{-0.9t} \right) = -30 e^{-0.9t}. \][/tex]

3. Substitute into the integration by parts formula:

Now, substitute [tex]\( u = t \)[/tex], [tex]\( du = dt \)[/tex], [tex]\( v = -30 e^{-0.9t} \)[/tex], and [tex]\( dv = 27 e^{-0.9t} \, dt \)[/tex]:
[tex]\[ \int 27t e^{-0.9t} \, dt = t \cdot (-30 e^{-0.9t}) - \int (-30 e^{-0.9t}) \, dt. \][/tex]

Simplify both terms:
[tex]\[ = -30t e^{-0.9t} + 30 \int e^{-0.9t} \, dt. \][/tex]

Integrate [tex]\( \int e^{-0.9t} \, dt \)[/tex]:
[tex]\[ \int e^{-0.9t} \, dt = -\frac{1}{0.9} e^{-0.9t} = -\frac{10}{9} e^{-0.9t}. \][/tex]

4. Complete the integration:

Plug this back into our expression:
[tex]\[ \int 27t e^{-0.9t} \, dt = -30t e^{-0.9t} + 30 \left(-\frac{10}{9} e^{-0.9t}\right). \][/tex]

Simplify:
[tex]\[ = -30t e^{-0.9t} - \frac{300}{9} e^{-0.9t}. \][/tex]

Further simplify:
[tex]\[ = -30t e^{-0.9t} - \frac{100}{3} e^{-0.9t}. \][/tex]

Evaluate this integral from 0 to 10:
[tex]\[ \left[ -30t e^{-0.9t} - \frac{100}{3} e^{-0.9t} \right]_{0}^{10}. \][/tex]

5. Evaluate the definite integral:

Calculate at the upper limit [tex]\( t = 10 \)[/tex]:
[tex]\[ -30(10) e^{-0.9(10)} - \frac{100}{3} e^{-0.9(10)} = -300 e^{-9} - \frac{100}{3} e^{-9}. \][/tex]

Simplify:
[tex]\[ = -\left( 300 + \frac{100}{3} \right)e^{-9}. \][/tex]

Calculate at the lower limit [tex]\( t = 0 \)[/tex]:
[tex]\[ -30(0) e^{-0.9(0)} - \frac{100}{3} e^{-0.9(0)} = 0 - \frac{100}{3}. \][/tex]

6. Combine the results:

[tex]\[ \left[ -\left( 300 + \frac{100}{3} \right)e^{-9} \right] - \left[ 0 - \frac{100}{3} \right] = -\left( \frac{900}{3} + \frac{100}{3} \right)e^{-9} + \frac{100}{3}. \][/tex]

Simplify further:
[tex]\[ -\frac{1000}{3} e^{-9} + \frac{100}{3}. \][/tex]

7. Approximate solution:

Evaluate [tex]\( e^{-9} \approx 1.2341 \times 10^{-4} \)[/tex]

Thus,
[tex]\[ -\frac{1000}{3} \times 1.2341 \times 10^{-4} + \frac{100}{3} = -0.4113 + 33.3333 \approx 32.9220. \][/tex]

8. Cardiac output:

Multiply by the given coefficient [tex]\( 0.2001 \)[/tex]:
[tex]\[ 0.2001 \times 32.9220 \approx 6.5869. \][/tex]

Thus, the cardiac output is approximately [tex]\( 6.5869 \)[/tex] liters per second (rounded to four decimal places).