At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which graph represents the sum [tex]\( w_1 + w_2 \)[/tex], let's go through the detailed calculation step-by-step.
Given two complex numbers:
[tex]\[ w_1 = 4 + 2i \][/tex]
[tex]\[ w_2 = -1 - 3i \][/tex]
Step 1: Add the Real Parts
First, we add the real parts of [tex]\( w_1 \)[/tex] and [tex]\( w_2 \)[/tex]:
[tex]\[ \text{Real part of } w_1 = 4 \][/tex]
[tex]\[ \text{Real part of } w_2 = -1 \][/tex]
[tex]\[ \text{Sum of real parts} = 4 + (-1) = 3 \][/tex]
Step 2: Add the Imaginary Parts
Next, we add the imaginary parts of [tex]\( w_1 \)[/tex] and [tex]\( w_2 \)[/tex]:
[tex]\[ \text{Imaginary part of } w_1 = 2 \][/tex]
[tex]\[ \text{Imaginary part of } w_2 = -3 \][/tex]
[tex]\[ \text{Sum of imaginary parts} = 2 + (-3) = -1 \][/tex]
Step 3: Combine the Results
We now combine the sums of the real and imaginary parts to get the resultant complex number.
[tex]\[ w_1 + w_2 = 3 - 1i \][/tex]
So, the sum of the complex numbers [tex]\( w_1 \)[/tex] and [tex]\( w_2 \)[/tex] is:
[tex]\[ w_1 + w_2 = 3 - 1i \][/tex]
Graph Representation:
A complex number [tex]\( 3 - 1i \)[/tex] can be represented graphically on the complex plane where the horizontal axis is the real part and the vertical axis is the imaginary part. In this case, the point corresponding to [tex]\( 3 - 1i \)[/tex] is plotted at:
[tex]\[ (3, -1) \][/tex]
Therefore, the graph that represents the sum [tex]\( w_1 + w_2 \)[/tex] is the one with the point located at coordinates (3, -1) on the complex plane.
Given two complex numbers:
[tex]\[ w_1 = 4 + 2i \][/tex]
[tex]\[ w_2 = -1 - 3i \][/tex]
Step 1: Add the Real Parts
First, we add the real parts of [tex]\( w_1 \)[/tex] and [tex]\( w_2 \)[/tex]:
[tex]\[ \text{Real part of } w_1 = 4 \][/tex]
[tex]\[ \text{Real part of } w_2 = -1 \][/tex]
[tex]\[ \text{Sum of real parts} = 4 + (-1) = 3 \][/tex]
Step 2: Add the Imaginary Parts
Next, we add the imaginary parts of [tex]\( w_1 \)[/tex] and [tex]\( w_2 \)[/tex]:
[tex]\[ \text{Imaginary part of } w_1 = 2 \][/tex]
[tex]\[ \text{Imaginary part of } w_2 = -3 \][/tex]
[tex]\[ \text{Sum of imaginary parts} = 2 + (-3) = -1 \][/tex]
Step 3: Combine the Results
We now combine the sums of the real and imaginary parts to get the resultant complex number.
[tex]\[ w_1 + w_2 = 3 - 1i \][/tex]
So, the sum of the complex numbers [tex]\( w_1 \)[/tex] and [tex]\( w_2 \)[/tex] is:
[tex]\[ w_1 + w_2 = 3 - 1i \][/tex]
Graph Representation:
A complex number [tex]\( 3 - 1i \)[/tex] can be represented graphically on the complex plane where the horizontal axis is the real part and the vertical axis is the imaginary part. In this case, the point corresponding to [tex]\( 3 - 1i \)[/tex] is plotted at:
[tex]\[ (3, -1) \][/tex]
Therefore, the graph that represents the sum [tex]\( w_1 + w_2 \)[/tex] is the one with the point located at coordinates (3, -1) on the complex plane.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.