Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the slope of the line that represents the given proportional relationship, we need to follow a systematic approach. Below is a step-by-step solution for finding the slope:
1. Identify Two Points on the Line:
Given the table:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 0 & 0.3 & 0.6 & 0.9 & 1.2 \\ y & 0 & 1 & 2 & 3 & 4 \\ \hline \end{array} \][/tex]
We can pick any two points from this table to calculate the slope. For simplicity, let's choose the first two points:
[tex]\[ A(0, 0) \][/tex]
[tex]\[ B(0.3, 1) \][/tex]
2. Apply the Slope Formula:
The formula for the slope [tex]\( m \)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting in the coordinates of points A and B, we get:
[tex]\[ x_1 = 0, \quad y_1 = 0 \][/tex]
[tex]\[ x_2 = 0.3, \quad y_2 = 1 \][/tex]
[tex]\[ m = \frac{1 - 0}{0.3 - 0} = \frac{1}{0.3} \][/tex]
3. Simplify the Expression:
Simplify the fraction to find the slope:
[tex]\[ m = \frac{1}{0.3} = \frac{1}{\frac{3}{10}} = 1 \times \frac{10}{3} = \frac{10}{3} \approx 3.333 \][/tex]
Therefore, the slope of the line that represents this relationship is approximately [tex]\( 3.333 \)[/tex].
Graphing the Line:
To graph the line, consider the points from the table:
- (0, 0)
- (0.3, 1)
- (0.6, 2)
- (0.9, 3)
- (1.2, 4)
These points can be plotted on a coordinate plane, and a straight line passing through these points will visually represent the relationship. The line should rise by approximately [tex]\( 3.333 \)[/tex] units in the y-direction for every 1 unit it runs in the x-direction.
1. Plot the Points:
- Start at the origin [tex]\((0, 0)\)[/tex].
- Move right to [tex]\( x = 0.3 \)[/tex] and up to [tex]\( y = 1 \)[/tex] to plot the point [tex]\((0.3, 1)\)[/tex].
- Continue this pattern for the remaining points [tex]\((0.6, 2)\)[/tex], [tex]\((0.9, 3)\)[/tex], and [tex]\((1.2, 4)\)[/tex].
2. Draw the Line:
Connect these points with a straight line. This line will have a slope of [tex]\( 3.333 \)[/tex] and will pass through all the points mentioned in the table.
Thus, the graph will be a straight line that confirms the proportional relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] with the slope calculated.
1. Identify Two Points on the Line:
Given the table:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 0 & 0.3 & 0.6 & 0.9 & 1.2 \\ y & 0 & 1 & 2 & 3 & 4 \\ \hline \end{array} \][/tex]
We can pick any two points from this table to calculate the slope. For simplicity, let's choose the first two points:
[tex]\[ A(0, 0) \][/tex]
[tex]\[ B(0.3, 1) \][/tex]
2. Apply the Slope Formula:
The formula for the slope [tex]\( m \)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting in the coordinates of points A and B, we get:
[tex]\[ x_1 = 0, \quad y_1 = 0 \][/tex]
[tex]\[ x_2 = 0.3, \quad y_2 = 1 \][/tex]
[tex]\[ m = \frac{1 - 0}{0.3 - 0} = \frac{1}{0.3} \][/tex]
3. Simplify the Expression:
Simplify the fraction to find the slope:
[tex]\[ m = \frac{1}{0.3} = \frac{1}{\frac{3}{10}} = 1 \times \frac{10}{3} = \frac{10}{3} \approx 3.333 \][/tex]
Therefore, the slope of the line that represents this relationship is approximately [tex]\( 3.333 \)[/tex].
Graphing the Line:
To graph the line, consider the points from the table:
- (0, 0)
- (0.3, 1)
- (0.6, 2)
- (0.9, 3)
- (1.2, 4)
These points can be plotted on a coordinate plane, and a straight line passing through these points will visually represent the relationship. The line should rise by approximately [tex]\( 3.333 \)[/tex] units in the y-direction for every 1 unit it runs in the x-direction.
1. Plot the Points:
- Start at the origin [tex]\((0, 0)\)[/tex].
- Move right to [tex]\( x = 0.3 \)[/tex] and up to [tex]\( y = 1 \)[/tex] to plot the point [tex]\((0.3, 1)\)[/tex].
- Continue this pattern for the remaining points [tex]\((0.6, 2)\)[/tex], [tex]\((0.9, 3)\)[/tex], and [tex]\((1.2, 4)\)[/tex].
2. Draw the Line:
Connect these points with a straight line. This line will have a slope of [tex]\( 3.333 \)[/tex] and will pass through all the points mentioned in the table.
Thus, the graph will be a straight line that confirms the proportional relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] with the slope calculated.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.