Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine whether the given function [tex]\( y = 9x - 8 \)[/tex] is an exponential function, we need to understand the definitions of linear and exponential functions.
1. Linear Functions: A linear function can be written in the form [tex]\( y = mx + b \)[/tex], where:
- [tex]\( m \)[/tex] is the slope of the line.
- [tex]\( b \)[/tex] is the y-intercept.
In this form, [tex]\( y \)[/tex] varies directly as [tex]\( x \)[/tex] changes. There are no exponential terms (e.g., terms where [tex]\( x \)[/tex] is an exponent).
2. Exponential Functions: An exponential function can be written in the form [tex]\( y = a \cdot b^x \)[/tex], where:
- [tex]\( a \)[/tex] is a constant.
- [tex]\( b \)[/tex] is the base of the exponential term and is also a constant.
In this form, [tex]\( y \)[/tex] changes multiplicatively as [tex]\( x \)[/tex] changes. The variable [tex]\( x \)[/tex] appears in the exponent.
Now, evaluate the given function [tex]\( y = 9x - 8 \)[/tex]:
- Compare it to the linear form [tex]\( y = mx + b \)[/tex]:
- Here, [tex]\( m = 9 \)[/tex]
- and [tex]\( b = -8 \)[/tex]
Since [tex]\( y = 9x - 8 \)[/tex] fits the linear form, it is a linear function.
- Compare it to the exponential form [tex]\( y = a \cdot b^x \)[/tex]:
- The function does not have an exponential term where [tex]\( x \)[/tex] is an exponent.
Therefore, the given function [tex]\( y = 9x - 8 \)[/tex] is not an exponential function.
The function [tex]\( y = 9x - 8 \)[/tex] is classified as a linear function.
Thus, the correct answer is:
- Not exponential
1. Linear Functions: A linear function can be written in the form [tex]\( y = mx + b \)[/tex], where:
- [tex]\( m \)[/tex] is the slope of the line.
- [tex]\( b \)[/tex] is the y-intercept.
In this form, [tex]\( y \)[/tex] varies directly as [tex]\( x \)[/tex] changes. There are no exponential terms (e.g., terms where [tex]\( x \)[/tex] is an exponent).
2. Exponential Functions: An exponential function can be written in the form [tex]\( y = a \cdot b^x \)[/tex], where:
- [tex]\( a \)[/tex] is a constant.
- [tex]\( b \)[/tex] is the base of the exponential term and is also a constant.
In this form, [tex]\( y \)[/tex] changes multiplicatively as [tex]\( x \)[/tex] changes. The variable [tex]\( x \)[/tex] appears in the exponent.
Now, evaluate the given function [tex]\( y = 9x - 8 \)[/tex]:
- Compare it to the linear form [tex]\( y = mx + b \)[/tex]:
- Here, [tex]\( m = 9 \)[/tex]
- and [tex]\( b = -8 \)[/tex]
Since [tex]\( y = 9x - 8 \)[/tex] fits the linear form, it is a linear function.
- Compare it to the exponential form [tex]\( y = a \cdot b^x \)[/tex]:
- The function does not have an exponential term where [tex]\( x \)[/tex] is an exponent.
Therefore, the given function [tex]\( y = 9x - 8 \)[/tex] is not an exponential function.
The function [tex]\( y = 9x - 8 \)[/tex] is classified as a linear function.
Thus, the correct answer is:
- Not exponential
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.