Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine which [tex]\( q \)[/tex]-values satisfy the inequality [tex]\( 6 - 3q \leq 1 \)[/tex], we will solve this inequality step-by-step.
1. Start with the given inequality:
[tex]\[ 6 - 3q \leq 1 \][/tex]
2. Subtract 6 from both sides to isolate the term involving [tex]\( q \)[/tex]:
[tex]\[ 6 - 3q - 6 \leq 1 - 6 \][/tex]
Simplifying both sides, we get:
[tex]\[ -3q \leq -5 \][/tex]
3. Divide both sides of the inequality by [tex]\(-3\)[/tex]. Note that dividing by a negative number reverses the inequality sign:
[tex]\[ q \geq \frac{5}{3} \][/tex]
This tells us that [tex]\( q \)[/tex] must be greater than or equal to [tex]\( \frac{5}{3} \)[/tex].
Now let's check each of the given [tex]\( q \)[/tex]-values against this condition:
- For [tex]\( q = 0 \)[/tex]:
[tex]\[ 0 \geq \frac{5}{3} \][/tex]
This is false because [tex]\( 0 \)[/tex] is not greater than or equal to [tex]\( \frac{5}{3} \)[/tex].
- For [tex]\( q = 1 \)[/tex]:
[tex]\[ 1 \geq \frac{5}{3} \][/tex]
This is also false because [tex]\( 1 \)[/tex] is not greater than or equal to [tex]\( \frac{5}{3} \)[/tex].
- For [tex]\( q = 2 \)[/tex]:
[tex]\[ 2 \geq \frac{5}{3} \][/tex]
This is true because [tex]\( 2 \)[/tex] is greater than [tex]\( \frac{5}{3} \)[/tex].
Since only [tex]\( q = 2 \)[/tex] satisfies the inequality, the correct answer is:
C) [tex]\( q = 2 \)[/tex]
1. Start with the given inequality:
[tex]\[ 6 - 3q \leq 1 \][/tex]
2. Subtract 6 from both sides to isolate the term involving [tex]\( q \)[/tex]:
[tex]\[ 6 - 3q - 6 \leq 1 - 6 \][/tex]
Simplifying both sides, we get:
[tex]\[ -3q \leq -5 \][/tex]
3. Divide both sides of the inequality by [tex]\(-3\)[/tex]. Note that dividing by a negative number reverses the inequality sign:
[tex]\[ q \geq \frac{5}{3} \][/tex]
This tells us that [tex]\( q \)[/tex] must be greater than or equal to [tex]\( \frac{5}{3} \)[/tex].
Now let's check each of the given [tex]\( q \)[/tex]-values against this condition:
- For [tex]\( q = 0 \)[/tex]:
[tex]\[ 0 \geq \frac{5}{3} \][/tex]
This is false because [tex]\( 0 \)[/tex] is not greater than or equal to [tex]\( \frac{5}{3} \)[/tex].
- For [tex]\( q = 1 \)[/tex]:
[tex]\[ 1 \geq \frac{5}{3} \][/tex]
This is also false because [tex]\( 1 \)[/tex] is not greater than or equal to [tex]\( \frac{5}{3} \)[/tex].
- For [tex]\( q = 2 \)[/tex]:
[tex]\[ 2 \geq \frac{5}{3} \][/tex]
This is true because [tex]\( 2 \)[/tex] is greater than [tex]\( \frac{5}{3} \)[/tex].
Since only [tex]\( q = 2 \)[/tex] satisfies the inequality, the correct answer is:
C) [tex]\( q = 2 \)[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.