Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine whether the function [tex]\( y = 9^{0.9x} \)[/tex] represents exponential growth or decay, we need to analyze the base of the exponent and the exponent itself.
1. Examine the Base:
- The base of the exponential function here is 9.
- Since 9 is greater than 1 (i.e., 9 > 1), it indicates that the function tends to increase as [tex]\(x\)[/tex] increases, provided the exponent is positive.
2. Examine the Exponent:
- The exponent in the function is [tex]\( 0.9x \)[/tex].
- Notice that [tex]\( 0.9 \)[/tex] is a positive number (i.e., 0.9 > 0).
- For [tex]\( x > 0 \)[/tex], the value of [tex]\( 0.9x \)[/tex] will always be positive as well.
3. Combining Both Observations:
- Since the base (9) is greater than 1 and the exponent ([tex]\( 0.9x \)[/tex]) is positive for [tex]\( x > 0 \)[/tex], the overall function [tex]\( y = 9^{0.9x} \)[/tex] will increase as [tex]\( x \)[/tex] increases.
- This behavior — where the function value increases as [tex]\( x \)[/tex] increases — is characteristic of exponential growth.
Therefore, [tex]\( y = 9^{0.9x} \)[/tex] is an example of an exponential growth function.
So, the correct classification of the function is:
[tex]\[ \boxed{\text{Growth}} \][/tex]
1. Examine the Base:
- The base of the exponential function here is 9.
- Since 9 is greater than 1 (i.e., 9 > 1), it indicates that the function tends to increase as [tex]\(x\)[/tex] increases, provided the exponent is positive.
2. Examine the Exponent:
- The exponent in the function is [tex]\( 0.9x \)[/tex].
- Notice that [tex]\( 0.9 \)[/tex] is a positive number (i.e., 0.9 > 0).
- For [tex]\( x > 0 \)[/tex], the value of [tex]\( 0.9x \)[/tex] will always be positive as well.
3. Combining Both Observations:
- Since the base (9) is greater than 1 and the exponent ([tex]\( 0.9x \)[/tex]) is positive for [tex]\( x > 0 \)[/tex], the overall function [tex]\( y = 9^{0.9x} \)[/tex] will increase as [tex]\( x \)[/tex] increases.
- This behavior — where the function value increases as [tex]\( x \)[/tex] increases — is characteristic of exponential growth.
Therefore, [tex]\( y = 9^{0.9x} \)[/tex] is an example of an exponential growth function.
So, the correct classification of the function is:
[tex]\[ \boxed{\text{Growth}} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.