Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the problem of dividing the polynomial [tex]\( \frac{8x^2 - 14x - 15}{2x - 7} \)[/tex], we need to perform polynomial long division. Let's go through this step by step.
1. Setup the Division:
We are dividing [tex]\( 8x^2 - 14x - 15 \)[/tex] by [tex]\( 2x - 7 \)[/tex].
2. First Term of the Quotient:
- Divide the leading term of the numerator, [tex]\( 8x^2 \)[/tex], by the leading term of the denominator, [tex]\( 2x \)[/tex].
- [tex]\( \frac{8x^2}{2x} = 4x \)[/tex].
- So, the first term in our quotient is [tex]\( 4x \)[/tex].
3. Multiply and Subtract:
- Multiply [tex]\( 4x \)[/tex] by the entire denominator [tex]\( 2x - 7 \)[/tex].
- [tex]\( 4x \cdot (2x - 7) = 8x^2 - 28x \)[/tex].
- Subtract this result from the original polynomial:
[tex]\[ (8x^2 - 14x - 15) - (8x^2 - 28x) = (-14x + 28x) - 15 = 14x - 15 \][/tex]
4. Next Term of the Quotient:
- Divide the new leading term of the remainder, [tex]\( 14x \)[/tex], by the leading term of the denominator, [tex]\( 2x \)[/tex].
- [tex]\( \frac{14x}{2x} = 7 \)[/tex].
- So, the next term in our quotient is [tex]\( + 7 \)[/tex].
5. Multiply and Subtract Again:
- Multiply [tex]\( 7 \)[/tex] by the entire denominator [tex]\( 2x - 7 \)[/tex].
- [tex]\( 7 \cdot (2x - 7) = 14x - 49 \)[/tex].
- Subtract this result from the remainder:
[tex]\[ (14x - 15) - (14x - 49) = -15 + 49 = 34 \][/tex]
- So, the remainder is [tex]\( 34 \)[/tex].
Putting it all together:
- The quotient is [tex]\( 4x + 7 \)[/tex].
- The remainder is [tex]\( 34 \)[/tex].
Thus, the result of dividing [tex]\( 8x^2 - 14x - 15 \)[/tex] by [tex]\( 2x - 7 \)[/tex] is:
[tex]\[ 4x + 7 + \frac{34}{2x - 7} \][/tex]
So, we have:
[tex]\[ \frac{8x^2 - 14x - 15}{2x - 7} = 4x + 7 + \frac{34}{2x - 7} \][/tex]
1. Setup the Division:
We are dividing [tex]\( 8x^2 - 14x - 15 \)[/tex] by [tex]\( 2x - 7 \)[/tex].
2. First Term of the Quotient:
- Divide the leading term of the numerator, [tex]\( 8x^2 \)[/tex], by the leading term of the denominator, [tex]\( 2x \)[/tex].
- [tex]\( \frac{8x^2}{2x} = 4x \)[/tex].
- So, the first term in our quotient is [tex]\( 4x \)[/tex].
3. Multiply and Subtract:
- Multiply [tex]\( 4x \)[/tex] by the entire denominator [tex]\( 2x - 7 \)[/tex].
- [tex]\( 4x \cdot (2x - 7) = 8x^2 - 28x \)[/tex].
- Subtract this result from the original polynomial:
[tex]\[ (8x^2 - 14x - 15) - (8x^2 - 28x) = (-14x + 28x) - 15 = 14x - 15 \][/tex]
4. Next Term of the Quotient:
- Divide the new leading term of the remainder, [tex]\( 14x \)[/tex], by the leading term of the denominator, [tex]\( 2x \)[/tex].
- [tex]\( \frac{14x}{2x} = 7 \)[/tex].
- So, the next term in our quotient is [tex]\( + 7 \)[/tex].
5. Multiply and Subtract Again:
- Multiply [tex]\( 7 \)[/tex] by the entire denominator [tex]\( 2x - 7 \)[/tex].
- [tex]\( 7 \cdot (2x - 7) = 14x - 49 \)[/tex].
- Subtract this result from the remainder:
[tex]\[ (14x - 15) - (14x - 49) = -15 + 49 = 34 \][/tex]
- So, the remainder is [tex]\( 34 \)[/tex].
Putting it all together:
- The quotient is [tex]\( 4x + 7 \)[/tex].
- The remainder is [tex]\( 34 \)[/tex].
Thus, the result of dividing [tex]\( 8x^2 - 14x - 15 \)[/tex] by [tex]\( 2x - 7 \)[/tex] is:
[tex]\[ 4x + 7 + \frac{34}{2x - 7} \][/tex]
So, we have:
[tex]\[ \frac{8x^2 - 14x - 15}{2x - 7} = 4x + 7 + \frac{34}{2x - 7} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.