Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To conduct a chi-square Goodness-of-Fit test, we follow a standard methodology:
1. Set up the hypotheses:
- Null hypothesis ([tex]\( H_0 \)[/tex]): The die has a uniform distribution.
- Alternative hypothesis ([tex]\( H_a \)[/tex]): The die does not have a uniform distribution.
2. Observed and expected frequencies:
- Observed counts: [tex]\([7, 10, 14, 16, 9, 22]\)[/tex]
- Expected counts: [tex]\([13, 13, 13, 13, 13, 13]\)[/tex]
3. Calculate the chi-square test statistic ([tex]\( \chi^2 \)[/tex]):
[tex]\[ \chi^2 = \sum \frac{(O_i - E_i)^2}{E_i} \][/tex]
where [tex]\( O_i \)[/tex] is the observed frequency and [tex]\( E_i \)[/tex] is the expected frequency.
4. Compute the individual components:
- For outcome 1: [tex]\(\frac{(7 - 13)^2}{13} = \frac{36}{13}\)[/tex]
- For outcome 2: [tex]\(\frac{(10 - 13)^2}{13} = \frac{9}{13}\)[/tex]
- For outcome 3: [tex]\(\frac{(14 - 13)^2}{13} = \frac{1}{13}\)[/tex]
- For outcome 4: [tex]\(\frac{(16 - 13)^2}{13} = \frac{9}{13}\)[/tex]
- For outcome 5: [tex]\(\frac{(9 - 13)^2}{13} = \frac{16}{13}\)[/tex]
- For outcome 6: [tex]\(\frac{(22 - 13)^2}{13} = \frac{81}{13}\)[/tex]
5. Sum these components:
[tex]\[ \chi^2 = \frac{36}{13} + \frac{9}{13} + \frac{1}{13} + \frac{9}{13} + \frac{16}{13} + \frac{81}{13} \][/tex]
[tex]\[ \chi^2 = \frac{36 + 9 + 1 + 9 + 16 + 81}{13} = \frac{152}{13} \approx 11.692 \][/tex]
So, the test statistic [tex]\( \chi^2 \)[/tex] rounded to three decimal places is:
[tex]\[ \boxed{11.692} \][/tex]
1. Set up the hypotheses:
- Null hypothesis ([tex]\( H_0 \)[/tex]): The die has a uniform distribution.
- Alternative hypothesis ([tex]\( H_a \)[/tex]): The die does not have a uniform distribution.
2. Observed and expected frequencies:
- Observed counts: [tex]\([7, 10, 14, 16, 9, 22]\)[/tex]
- Expected counts: [tex]\([13, 13, 13, 13, 13, 13]\)[/tex]
3. Calculate the chi-square test statistic ([tex]\( \chi^2 \)[/tex]):
[tex]\[ \chi^2 = \sum \frac{(O_i - E_i)^2}{E_i} \][/tex]
where [tex]\( O_i \)[/tex] is the observed frequency and [tex]\( E_i \)[/tex] is the expected frequency.
4. Compute the individual components:
- For outcome 1: [tex]\(\frac{(7 - 13)^2}{13} = \frac{36}{13}\)[/tex]
- For outcome 2: [tex]\(\frac{(10 - 13)^2}{13} = \frac{9}{13}\)[/tex]
- For outcome 3: [tex]\(\frac{(14 - 13)^2}{13} = \frac{1}{13}\)[/tex]
- For outcome 4: [tex]\(\frac{(16 - 13)^2}{13} = \frac{9}{13}\)[/tex]
- For outcome 5: [tex]\(\frac{(9 - 13)^2}{13} = \frac{16}{13}\)[/tex]
- For outcome 6: [tex]\(\frac{(22 - 13)^2}{13} = \frac{81}{13}\)[/tex]
5. Sum these components:
[tex]\[ \chi^2 = \frac{36}{13} + \frac{9}{13} + \frac{1}{13} + \frac{9}{13} + \frac{16}{13} + \frac{81}{13} \][/tex]
[tex]\[ \chi^2 = \frac{36 + 9 + 1 + 9 + 16 + 81}{13} = \frac{152}{13} \approx 11.692 \][/tex]
So, the test statistic [tex]\( \chi^2 \)[/tex] rounded to three decimal places is:
[tex]\[ \boxed{11.692} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.