Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To conduct a chi-square Goodness-of-Fit test, we follow a standard methodology:
1. Set up the hypotheses:
- Null hypothesis ([tex]\( H_0 \)[/tex]): The die has a uniform distribution.
- Alternative hypothesis ([tex]\( H_a \)[/tex]): The die does not have a uniform distribution.
2. Observed and expected frequencies:
- Observed counts: [tex]\([7, 10, 14, 16, 9, 22]\)[/tex]
- Expected counts: [tex]\([13, 13, 13, 13, 13, 13]\)[/tex]
3. Calculate the chi-square test statistic ([tex]\( \chi^2 \)[/tex]):
[tex]\[ \chi^2 = \sum \frac{(O_i - E_i)^2}{E_i} \][/tex]
where [tex]\( O_i \)[/tex] is the observed frequency and [tex]\( E_i \)[/tex] is the expected frequency.
4. Compute the individual components:
- For outcome 1: [tex]\(\frac{(7 - 13)^2}{13} = \frac{36}{13}\)[/tex]
- For outcome 2: [tex]\(\frac{(10 - 13)^2}{13} = \frac{9}{13}\)[/tex]
- For outcome 3: [tex]\(\frac{(14 - 13)^2}{13} = \frac{1}{13}\)[/tex]
- For outcome 4: [tex]\(\frac{(16 - 13)^2}{13} = \frac{9}{13}\)[/tex]
- For outcome 5: [tex]\(\frac{(9 - 13)^2}{13} = \frac{16}{13}\)[/tex]
- For outcome 6: [tex]\(\frac{(22 - 13)^2}{13} = \frac{81}{13}\)[/tex]
5. Sum these components:
[tex]\[ \chi^2 = \frac{36}{13} + \frac{9}{13} + \frac{1}{13} + \frac{9}{13} + \frac{16}{13} + \frac{81}{13} \][/tex]
[tex]\[ \chi^2 = \frac{36 + 9 + 1 + 9 + 16 + 81}{13} = \frac{152}{13} \approx 11.692 \][/tex]
So, the test statistic [tex]\( \chi^2 \)[/tex] rounded to three decimal places is:
[tex]\[ \boxed{11.692} \][/tex]
1. Set up the hypotheses:
- Null hypothesis ([tex]\( H_0 \)[/tex]): The die has a uniform distribution.
- Alternative hypothesis ([tex]\( H_a \)[/tex]): The die does not have a uniform distribution.
2. Observed and expected frequencies:
- Observed counts: [tex]\([7, 10, 14, 16, 9, 22]\)[/tex]
- Expected counts: [tex]\([13, 13, 13, 13, 13, 13]\)[/tex]
3. Calculate the chi-square test statistic ([tex]\( \chi^2 \)[/tex]):
[tex]\[ \chi^2 = \sum \frac{(O_i - E_i)^2}{E_i} \][/tex]
where [tex]\( O_i \)[/tex] is the observed frequency and [tex]\( E_i \)[/tex] is the expected frequency.
4. Compute the individual components:
- For outcome 1: [tex]\(\frac{(7 - 13)^2}{13} = \frac{36}{13}\)[/tex]
- For outcome 2: [tex]\(\frac{(10 - 13)^2}{13} = \frac{9}{13}\)[/tex]
- For outcome 3: [tex]\(\frac{(14 - 13)^2}{13} = \frac{1}{13}\)[/tex]
- For outcome 4: [tex]\(\frac{(16 - 13)^2}{13} = \frac{9}{13}\)[/tex]
- For outcome 5: [tex]\(\frac{(9 - 13)^2}{13} = \frac{16}{13}\)[/tex]
- For outcome 6: [tex]\(\frac{(22 - 13)^2}{13} = \frac{81}{13}\)[/tex]
5. Sum these components:
[tex]\[ \chi^2 = \frac{36}{13} + \frac{9}{13} + \frac{1}{13} + \frac{9}{13} + \frac{16}{13} + \frac{81}{13} \][/tex]
[tex]\[ \chi^2 = \frac{36 + 9 + 1 + 9 + 16 + 81}{13} = \frac{152}{13} \approx 11.692 \][/tex]
So, the test statistic [tex]\( \chi^2 \)[/tex] rounded to three decimal places is:
[tex]\[ \boxed{11.692} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.