Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To conduct a chi-square Goodness-of-Fit test, we follow a standard methodology:
1. Set up the hypotheses:
- Null hypothesis ([tex]\( H_0 \)[/tex]): The die has a uniform distribution.
- Alternative hypothesis ([tex]\( H_a \)[/tex]): The die does not have a uniform distribution.
2. Observed and expected frequencies:
- Observed counts: [tex]\([7, 10, 14, 16, 9, 22]\)[/tex]
- Expected counts: [tex]\([13, 13, 13, 13, 13, 13]\)[/tex]
3. Calculate the chi-square test statistic ([tex]\( \chi^2 \)[/tex]):
[tex]\[ \chi^2 = \sum \frac{(O_i - E_i)^2}{E_i} \][/tex]
where [tex]\( O_i \)[/tex] is the observed frequency and [tex]\( E_i \)[/tex] is the expected frequency.
4. Compute the individual components:
- For outcome 1: [tex]\(\frac{(7 - 13)^2}{13} = \frac{36}{13}\)[/tex]
- For outcome 2: [tex]\(\frac{(10 - 13)^2}{13} = \frac{9}{13}\)[/tex]
- For outcome 3: [tex]\(\frac{(14 - 13)^2}{13} = \frac{1}{13}\)[/tex]
- For outcome 4: [tex]\(\frac{(16 - 13)^2}{13} = \frac{9}{13}\)[/tex]
- For outcome 5: [tex]\(\frac{(9 - 13)^2}{13} = \frac{16}{13}\)[/tex]
- For outcome 6: [tex]\(\frac{(22 - 13)^2}{13} = \frac{81}{13}\)[/tex]
5. Sum these components:
[tex]\[ \chi^2 = \frac{36}{13} + \frac{9}{13} + \frac{1}{13} + \frac{9}{13} + \frac{16}{13} + \frac{81}{13} \][/tex]
[tex]\[ \chi^2 = \frac{36 + 9 + 1 + 9 + 16 + 81}{13} = \frac{152}{13} \approx 11.692 \][/tex]
So, the test statistic [tex]\( \chi^2 \)[/tex] rounded to three decimal places is:
[tex]\[ \boxed{11.692} \][/tex]
1. Set up the hypotheses:
- Null hypothesis ([tex]\( H_0 \)[/tex]): The die has a uniform distribution.
- Alternative hypothesis ([tex]\( H_a \)[/tex]): The die does not have a uniform distribution.
2. Observed and expected frequencies:
- Observed counts: [tex]\([7, 10, 14, 16, 9, 22]\)[/tex]
- Expected counts: [tex]\([13, 13, 13, 13, 13, 13]\)[/tex]
3. Calculate the chi-square test statistic ([tex]\( \chi^2 \)[/tex]):
[tex]\[ \chi^2 = \sum \frac{(O_i - E_i)^2}{E_i} \][/tex]
where [tex]\( O_i \)[/tex] is the observed frequency and [tex]\( E_i \)[/tex] is the expected frequency.
4. Compute the individual components:
- For outcome 1: [tex]\(\frac{(7 - 13)^2}{13} = \frac{36}{13}\)[/tex]
- For outcome 2: [tex]\(\frac{(10 - 13)^2}{13} = \frac{9}{13}\)[/tex]
- For outcome 3: [tex]\(\frac{(14 - 13)^2}{13} = \frac{1}{13}\)[/tex]
- For outcome 4: [tex]\(\frac{(16 - 13)^2}{13} = \frac{9}{13}\)[/tex]
- For outcome 5: [tex]\(\frac{(9 - 13)^2}{13} = \frac{16}{13}\)[/tex]
- For outcome 6: [tex]\(\frac{(22 - 13)^2}{13} = \frac{81}{13}\)[/tex]
5. Sum these components:
[tex]\[ \chi^2 = \frac{36}{13} + \frac{9}{13} + \frac{1}{13} + \frac{9}{13} + \frac{16}{13} + \frac{81}{13} \][/tex]
[tex]\[ \chi^2 = \frac{36 + 9 + 1 + 9 + 16 + 81}{13} = \frac{152}{13} \approx 11.692 \][/tex]
So, the test statistic [tex]\( \chi^2 \)[/tex] rounded to three decimal places is:
[tex]\[ \boxed{11.692} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.