Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the [tex]$x$[/tex]-intercepts of the graph of the function [tex]\( f(x) = x^2 + 4x - 12 \)[/tex], we need to determine the points where the graph intersects the x-axis. At the x-intercepts, the value of [tex]\( y \)[/tex] (or [tex]\( f(x) \)[/tex]) is zero. Therefore, we need to solve the equation:
[tex]\[ x^2 + 4x - 12 = 0 \][/tex]
This is a quadratic equation, so we can solve for [tex]\( x \)[/tex] using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
For the quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex], the coefficients are:
- [tex]\( a = 1 \)[/tex]
- [tex]\( b = 4 \)[/tex]
- [tex]\( c = -12 \)[/tex]
Plugging the coefficients [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] into the quadratic formula:
[tex]\[ x = \frac{-4 \pm \sqrt{4^2 - 4 \cdot 1 \cdot (-12)}}{2 \cdot 1} \][/tex]
Calculate the discriminant:
[tex]\[ 4^2 - 4 \cdot 1 \cdot (-12) = 16 + 48 = 64 \][/tex]
So, the formula now becomes:
[tex]\[ x = \frac{-4 \pm \sqrt{64}}{2} \][/tex]
Simplify further:
[tex]\[ x = \frac{-4 \pm 8}{2} \][/tex]
This gives us two solutions:
[tex]\[ x = \frac{-4 + 8}{2} = \frac{4}{2} = 2 \][/tex]
and
[tex]\[ x = \frac{-4 - 8}{2} = \frac{-12}{2} = -6 \][/tex]
Thus, the solutions to the equation are [tex]\( x = 2 \)[/tex] and [tex]\( x = -6 \)[/tex]. These solutions represent the x-intercepts of the graph of the function [tex]\( f(x) \)[/tex].
Therefore, the x-intercepts are at the points [tex]\( (-6, 0) \)[/tex] and [tex]\( (2, 0) \)[/tex].
So, the correct answer is:
[tex]\[ (-6, 0),(2, 0) \][/tex]
[tex]\[ x^2 + 4x - 12 = 0 \][/tex]
This is a quadratic equation, so we can solve for [tex]\( x \)[/tex] using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
For the quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex], the coefficients are:
- [tex]\( a = 1 \)[/tex]
- [tex]\( b = 4 \)[/tex]
- [tex]\( c = -12 \)[/tex]
Plugging the coefficients [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] into the quadratic formula:
[tex]\[ x = \frac{-4 \pm \sqrt{4^2 - 4 \cdot 1 \cdot (-12)}}{2 \cdot 1} \][/tex]
Calculate the discriminant:
[tex]\[ 4^2 - 4 \cdot 1 \cdot (-12) = 16 + 48 = 64 \][/tex]
So, the formula now becomes:
[tex]\[ x = \frac{-4 \pm \sqrt{64}}{2} \][/tex]
Simplify further:
[tex]\[ x = \frac{-4 \pm 8}{2} \][/tex]
This gives us two solutions:
[tex]\[ x = \frac{-4 + 8}{2} = \frac{4}{2} = 2 \][/tex]
and
[tex]\[ x = \frac{-4 - 8}{2} = \frac{-12}{2} = -6 \][/tex]
Thus, the solutions to the equation are [tex]\( x = 2 \)[/tex] and [tex]\( x = -6 \)[/tex]. These solutions represent the x-intercepts of the graph of the function [tex]\( f(x) \)[/tex].
Therefore, the x-intercepts are at the points [tex]\( (-6, 0) \)[/tex] and [tex]\( (2, 0) \)[/tex].
So, the correct answer is:
[tex]\[ (-6, 0),(2, 0) \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.