Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's break down this problem step by step to determine the number of hours the plumber worked.
1. Define the given values:
- The fixed charge for the plumber to come to the house is \[tex]$35. - The charge per hour for the plumber’s work is \$[/tex]60.
- The total charge that Jerald paid is \$305.
2. Set up the equation:
- Let's denote the number of hours the plumber worked by [tex]\( x \)[/tex].
- The total charge can be expressed in an equation where the fixed charge plus the hourly charge equals the total charge.
- Therefore, the equation will be:
[tex]\[ 60x + 35 = 305 \][/tex]
3. Solve for [tex]\( x \)[/tex]:
- First, isolate the term with [tex]\( x \)[/tex] on one side of the equation by subtracting the fixed charge from the total charge:
[tex]\[ 60x + 35 - 35 = 305 - 35 \][/tex]
Simplifying this, we get:
[tex]\[ 60x = 270 \][/tex]
- Next, solve for [tex]\( x \)[/tex] by dividing both sides of the equation by the hourly charge:
[tex]\[ x = \frac{270}{60} \][/tex]
- Performing the division gives us:
[tex]\[ x = 4.5 \][/tex]
4. Conclusion:
- The plumber worked for [tex]\( 4.5 \)[/tex] hours.
Hence, the equation that correctly represents the problem and its solution is:
[tex]\[ 60x + 35 = 305 \quad \Rightarrow \quad x = 4.5 \text{ hours} \][/tex]
1. Define the given values:
- The fixed charge for the plumber to come to the house is \[tex]$35. - The charge per hour for the plumber’s work is \$[/tex]60.
- The total charge that Jerald paid is \$305.
2. Set up the equation:
- Let's denote the number of hours the plumber worked by [tex]\( x \)[/tex].
- The total charge can be expressed in an equation where the fixed charge plus the hourly charge equals the total charge.
- Therefore, the equation will be:
[tex]\[ 60x + 35 = 305 \][/tex]
3. Solve for [tex]\( x \)[/tex]:
- First, isolate the term with [tex]\( x \)[/tex] on one side of the equation by subtracting the fixed charge from the total charge:
[tex]\[ 60x + 35 - 35 = 305 - 35 \][/tex]
Simplifying this, we get:
[tex]\[ 60x = 270 \][/tex]
- Next, solve for [tex]\( x \)[/tex] by dividing both sides of the equation by the hourly charge:
[tex]\[ x = \frac{270}{60} \][/tex]
- Performing the division gives us:
[tex]\[ x = 4.5 \][/tex]
4. Conclusion:
- The plumber worked for [tex]\( 4.5 \)[/tex] hours.
Hence, the equation that correctly represents the problem and its solution is:
[tex]\[ 60x + 35 = 305 \quad \Rightarrow \quad x = 4.5 \text{ hours} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.