Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Sure, let's analyze the function [tex]\( f(x) = -x^2 + 3x + 8 \)[/tex] to determine the interval over which it is increasing.
1. Identifying the coefficients:
The quadratic function [tex]\( f(x) = -x^2 + 3x + 8 \)[/tex] has:
- [tex]\( a = -1 \)[/tex] (the coefficient of [tex]\( x^2 \)[/tex])
- [tex]\( b = 3 \)[/tex] (the coefficient of [tex]\( x \)[/tex])
- [tex]\( c = 8 \)[/tex] (the constant term)
2. Vertex of the quadratic function:
The vertex form of a quadratic function [tex]\( y = ax^2 + bx + c \)[/tex] gives the x-coordinate of the vertex as [tex]\( x = \frac{-b}{2a} \)[/tex].
Substituting [tex]\( a = -1 \)[/tex] and [tex]\( b = 3 \)[/tex] into the formula, we get:
[tex]\[ x = \frac{-b}{2a} = \frac{-3}{2(-1)} = \frac{3}{2} = 1.5 \][/tex]
3. Behavior of the quadratic function:
For a quadratic function [tex]\( f(x) = ax^2 + bx + c \)[/tex]:
- If [tex]\( a > 0 \)[/tex] (the parabola opens upwards), the function is increasing to the right of the vertex and decreasing to the left of the vertex.
- If [tex]\( a < 0 \)[/tex] (the parabola opens downwards), the function is increasing to the left of the vertex and decreasing to the right of the vertex.
Since [tex]\( a = -1 \)[/tex] in our function, the parabola opens downwards.
4. Determining the interval of increase:
Since the parabola opens downwards, [tex]\( f(x) \)[/tex] is increasing on the interval to the left of its vertex.
Thus, [tex]\( f(x) \)[/tex] is increasing for [tex]\( x < 1.5 \)[/tex].
5. Conclusion:
- The interval where the graph of [tex]\( f(x) = -x^2 + 3x + 8 \)[/tex] is increasing is [tex]\( (-\infty, 1.5) \)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{(-\infty, 1.5)} \][/tex]
1. Identifying the coefficients:
The quadratic function [tex]\( f(x) = -x^2 + 3x + 8 \)[/tex] has:
- [tex]\( a = -1 \)[/tex] (the coefficient of [tex]\( x^2 \)[/tex])
- [tex]\( b = 3 \)[/tex] (the coefficient of [tex]\( x \)[/tex])
- [tex]\( c = 8 \)[/tex] (the constant term)
2. Vertex of the quadratic function:
The vertex form of a quadratic function [tex]\( y = ax^2 + bx + c \)[/tex] gives the x-coordinate of the vertex as [tex]\( x = \frac{-b}{2a} \)[/tex].
Substituting [tex]\( a = -1 \)[/tex] and [tex]\( b = 3 \)[/tex] into the formula, we get:
[tex]\[ x = \frac{-b}{2a} = \frac{-3}{2(-1)} = \frac{3}{2} = 1.5 \][/tex]
3. Behavior of the quadratic function:
For a quadratic function [tex]\( f(x) = ax^2 + bx + c \)[/tex]:
- If [tex]\( a > 0 \)[/tex] (the parabola opens upwards), the function is increasing to the right of the vertex and decreasing to the left of the vertex.
- If [tex]\( a < 0 \)[/tex] (the parabola opens downwards), the function is increasing to the left of the vertex and decreasing to the right of the vertex.
Since [tex]\( a = -1 \)[/tex] in our function, the parabola opens downwards.
4. Determining the interval of increase:
Since the parabola opens downwards, [tex]\( f(x) \)[/tex] is increasing on the interval to the left of its vertex.
Thus, [tex]\( f(x) \)[/tex] is increasing for [tex]\( x < 1.5 \)[/tex].
5. Conclusion:
- The interval where the graph of [tex]\( f(x) = -x^2 + 3x + 8 \)[/tex] is increasing is [tex]\( (-\infty, 1.5) \)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{(-\infty, 1.5)} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.