Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the pressure of the gas using the ideal gas law, we will use the formula:
[tex]\[ PV = nRT \][/tex]
Where:
- [tex]\( P \)[/tex] is the pressure in kPa,
- [tex]\( V \)[/tex] is the volume in liters,
- [tex]\( n \)[/tex] is the number of moles,
- [tex]\( R \)[/tex] is the ideal gas constant ([tex]\( 8.314 \frac{L \cdot kPa}{mol \cdot K} \)[/tex]),
- [tex]\( T \)[/tex] is the temperature in Kelvin.
Given the variables in the problem:
- [tex]\( n = 0.540 \)[/tex] moles,
- [tex]\( V = 35.5 \)[/tex] liters,
- [tex]\( T = 223 \)[/tex] Kelvin,
- [tex]\( R = 8.314 \frac{L \cdot kPa}{mol \cdot K} \)[/tex],
We need to solve for [tex]\( P \)[/tex]. The ideal gas law rearranged to solve for [tex]\( P \)[/tex] is:
[tex]\[ P = \frac{nRT}{V} \][/tex]
Substitute the given values into the equation:
[tex]\[ P = \frac{0.540 \, \text{mol} \times 8.314 \frac{L \cdot kPa}{mol \cdot K} \times 223 \, \text{K}}{35.5 \, \text{L}} \][/tex]
Calculate the numerator:
[tex]\[ (0.540 \, \text{mol}) \times (8.314 \frac{L \cdot kPa}{mol \cdot K}) \times (223 \, \text{K}) = 1001.736564 \, \text{kPa} \cdot \text{L} \][/tex]
And then divide by the volume:
[tex]\[ P = \frac{1001.736564 \, \text{kPa} \cdot \text{L}}{35.5 \, \text{L}} \approx 28.202 \, \text{kPa} \][/tex]
Therefore, the pressure of the gas is:
[tex]\[ P \approx 28.2 \, \text{kPa} \][/tex]
So, the correct answer is:
[tex]\[ 28.2 \, \text{kPa} \][/tex]
[tex]\[ PV = nRT \][/tex]
Where:
- [tex]\( P \)[/tex] is the pressure in kPa,
- [tex]\( V \)[/tex] is the volume in liters,
- [tex]\( n \)[/tex] is the number of moles,
- [tex]\( R \)[/tex] is the ideal gas constant ([tex]\( 8.314 \frac{L \cdot kPa}{mol \cdot K} \)[/tex]),
- [tex]\( T \)[/tex] is the temperature in Kelvin.
Given the variables in the problem:
- [tex]\( n = 0.540 \)[/tex] moles,
- [tex]\( V = 35.5 \)[/tex] liters,
- [tex]\( T = 223 \)[/tex] Kelvin,
- [tex]\( R = 8.314 \frac{L \cdot kPa}{mol \cdot K} \)[/tex],
We need to solve for [tex]\( P \)[/tex]. The ideal gas law rearranged to solve for [tex]\( P \)[/tex] is:
[tex]\[ P = \frac{nRT}{V} \][/tex]
Substitute the given values into the equation:
[tex]\[ P = \frac{0.540 \, \text{mol} \times 8.314 \frac{L \cdot kPa}{mol \cdot K} \times 223 \, \text{K}}{35.5 \, \text{L}} \][/tex]
Calculate the numerator:
[tex]\[ (0.540 \, \text{mol}) \times (8.314 \frac{L \cdot kPa}{mol \cdot K}) \times (223 \, \text{K}) = 1001.736564 \, \text{kPa} \cdot \text{L} \][/tex]
And then divide by the volume:
[tex]\[ P = \frac{1001.736564 \, \text{kPa} \cdot \text{L}}{35.5 \, \text{L}} \approx 28.202 \, \text{kPa} \][/tex]
Therefore, the pressure of the gas is:
[tex]\[ P \approx 28.2 \, \text{kPa} \][/tex]
So, the correct answer is:
[tex]\[ 28.2 \, \text{kPa} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.