Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the pressure of the gas using the ideal gas law, we will use the formula:
[tex]\[ PV = nRT \][/tex]
Where:
- [tex]\( P \)[/tex] is the pressure in kPa,
- [tex]\( V \)[/tex] is the volume in liters,
- [tex]\( n \)[/tex] is the number of moles,
- [tex]\( R \)[/tex] is the ideal gas constant ([tex]\( 8.314 \frac{L \cdot kPa}{mol \cdot K} \)[/tex]),
- [tex]\( T \)[/tex] is the temperature in Kelvin.
Given the variables in the problem:
- [tex]\( n = 0.540 \)[/tex] moles,
- [tex]\( V = 35.5 \)[/tex] liters,
- [tex]\( T = 223 \)[/tex] Kelvin,
- [tex]\( R = 8.314 \frac{L \cdot kPa}{mol \cdot K} \)[/tex],
We need to solve for [tex]\( P \)[/tex]. The ideal gas law rearranged to solve for [tex]\( P \)[/tex] is:
[tex]\[ P = \frac{nRT}{V} \][/tex]
Substitute the given values into the equation:
[tex]\[ P = \frac{0.540 \, \text{mol} \times 8.314 \frac{L \cdot kPa}{mol \cdot K} \times 223 \, \text{K}}{35.5 \, \text{L}} \][/tex]
Calculate the numerator:
[tex]\[ (0.540 \, \text{mol}) \times (8.314 \frac{L \cdot kPa}{mol \cdot K}) \times (223 \, \text{K}) = 1001.736564 \, \text{kPa} \cdot \text{L} \][/tex]
And then divide by the volume:
[tex]\[ P = \frac{1001.736564 \, \text{kPa} \cdot \text{L}}{35.5 \, \text{L}} \approx 28.202 \, \text{kPa} \][/tex]
Therefore, the pressure of the gas is:
[tex]\[ P \approx 28.2 \, \text{kPa} \][/tex]
So, the correct answer is:
[tex]\[ 28.2 \, \text{kPa} \][/tex]
[tex]\[ PV = nRT \][/tex]
Where:
- [tex]\( P \)[/tex] is the pressure in kPa,
- [tex]\( V \)[/tex] is the volume in liters,
- [tex]\( n \)[/tex] is the number of moles,
- [tex]\( R \)[/tex] is the ideal gas constant ([tex]\( 8.314 \frac{L \cdot kPa}{mol \cdot K} \)[/tex]),
- [tex]\( T \)[/tex] is the temperature in Kelvin.
Given the variables in the problem:
- [tex]\( n = 0.540 \)[/tex] moles,
- [tex]\( V = 35.5 \)[/tex] liters,
- [tex]\( T = 223 \)[/tex] Kelvin,
- [tex]\( R = 8.314 \frac{L \cdot kPa}{mol \cdot K} \)[/tex],
We need to solve for [tex]\( P \)[/tex]. The ideal gas law rearranged to solve for [tex]\( P \)[/tex] is:
[tex]\[ P = \frac{nRT}{V} \][/tex]
Substitute the given values into the equation:
[tex]\[ P = \frac{0.540 \, \text{mol} \times 8.314 \frac{L \cdot kPa}{mol \cdot K} \times 223 \, \text{K}}{35.5 \, \text{L}} \][/tex]
Calculate the numerator:
[tex]\[ (0.540 \, \text{mol}) \times (8.314 \frac{L \cdot kPa}{mol \cdot K}) \times (223 \, \text{K}) = 1001.736564 \, \text{kPa} \cdot \text{L} \][/tex]
And then divide by the volume:
[tex]\[ P = \frac{1001.736564 \, \text{kPa} \cdot \text{L}}{35.5 \, \text{L}} \approx 28.202 \, \text{kPa} \][/tex]
Therefore, the pressure of the gas is:
[tex]\[ P \approx 28.2 \, \text{kPa} \][/tex]
So, the correct answer is:
[tex]\[ 28.2 \, \text{kPa} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.