Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the pressure of the gas using the ideal gas law, we will use the formula:
[tex]\[ PV = nRT \][/tex]
Where:
- [tex]\( P \)[/tex] is the pressure in kPa,
- [tex]\( V \)[/tex] is the volume in liters,
- [tex]\( n \)[/tex] is the number of moles,
- [tex]\( R \)[/tex] is the ideal gas constant ([tex]\( 8.314 \frac{L \cdot kPa}{mol \cdot K} \)[/tex]),
- [tex]\( T \)[/tex] is the temperature in Kelvin.
Given the variables in the problem:
- [tex]\( n = 0.540 \)[/tex] moles,
- [tex]\( V = 35.5 \)[/tex] liters,
- [tex]\( T = 223 \)[/tex] Kelvin,
- [tex]\( R = 8.314 \frac{L \cdot kPa}{mol \cdot K} \)[/tex],
We need to solve for [tex]\( P \)[/tex]. The ideal gas law rearranged to solve for [tex]\( P \)[/tex] is:
[tex]\[ P = \frac{nRT}{V} \][/tex]
Substitute the given values into the equation:
[tex]\[ P = \frac{0.540 \, \text{mol} \times 8.314 \frac{L \cdot kPa}{mol \cdot K} \times 223 \, \text{K}}{35.5 \, \text{L}} \][/tex]
Calculate the numerator:
[tex]\[ (0.540 \, \text{mol}) \times (8.314 \frac{L \cdot kPa}{mol \cdot K}) \times (223 \, \text{K}) = 1001.736564 \, \text{kPa} \cdot \text{L} \][/tex]
And then divide by the volume:
[tex]\[ P = \frac{1001.736564 \, \text{kPa} \cdot \text{L}}{35.5 \, \text{L}} \approx 28.202 \, \text{kPa} \][/tex]
Therefore, the pressure of the gas is:
[tex]\[ P \approx 28.2 \, \text{kPa} \][/tex]
So, the correct answer is:
[tex]\[ 28.2 \, \text{kPa} \][/tex]
[tex]\[ PV = nRT \][/tex]
Where:
- [tex]\( P \)[/tex] is the pressure in kPa,
- [tex]\( V \)[/tex] is the volume in liters,
- [tex]\( n \)[/tex] is the number of moles,
- [tex]\( R \)[/tex] is the ideal gas constant ([tex]\( 8.314 \frac{L \cdot kPa}{mol \cdot K} \)[/tex]),
- [tex]\( T \)[/tex] is the temperature in Kelvin.
Given the variables in the problem:
- [tex]\( n = 0.540 \)[/tex] moles,
- [tex]\( V = 35.5 \)[/tex] liters,
- [tex]\( T = 223 \)[/tex] Kelvin,
- [tex]\( R = 8.314 \frac{L \cdot kPa}{mol \cdot K} \)[/tex],
We need to solve for [tex]\( P \)[/tex]. The ideal gas law rearranged to solve for [tex]\( P \)[/tex] is:
[tex]\[ P = \frac{nRT}{V} \][/tex]
Substitute the given values into the equation:
[tex]\[ P = \frac{0.540 \, \text{mol} \times 8.314 \frac{L \cdot kPa}{mol \cdot K} \times 223 \, \text{K}}{35.5 \, \text{L}} \][/tex]
Calculate the numerator:
[tex]\[ (0.540 \, \text{mol}) \times (8.314 \frac{L \cdot kPa}{mol \cdot K}) \times (223 \, \text{K}) = 1001.736564 \, \text{kPa} \cdot \text{L} \][/tex]
And then divide by the volume:
[tex]\[ P = \frac{1001.736564 \, \text{kPa} \cdot \text{L}}{35.5 \, \text{L}} \approx 28.202 \, \text{kPa} \][/tex]
Therefore, the pressure of the gas is:
[tex]\[ P \approx 28.2 \, \text{kPa} \][/tex]
So, the correct answer is:
[tex]\[ 28.2 \, \text{kPa} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.