Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the pressure of the gas using the ideal gas law, we will use the formula:
[tex]\[ PV = nRT \][/tex]
Where:
- [tex]\( P \)[/tex] is the pressure in kPa,
- [tex]\( V \)[/tex] is the volume in liters,
- [tex]\( n \)[/tex] is the number of moles,
- [tex]\( R \)[/tex] is the ideal gas constant ([tex]\( 8.314 \frac{L \cdot kPa}{mol \cdot K} \)[/tex]),
- [tex]\( T \)[/tex] is the temperature in Kelvin.
Given the variables in the problem:
- [tex]\( n = 0.540 \)[/tex] moles,
- [tex]\( V = 35.5 \)[/tex] liters,
- [tex]\( T = 223 \)[/tex] Kelvin,
- [tex]\( R = 8.314 \frac{L \cdot kPa}{mol \cdot K} \)[/tex],
We need to solve for [tex]\( P \)[/tex]. The ideal gas law rearranged to solve for [tex]\( P \)[/tex] is:
[tex]\[ P = \frac{nRT}{V} \][/tex]
Substitute the given values into the equation:
[tex]\[ P = \frac{0.540 \, \text{mol} \times 8.314 \frac{L \cdot kPa}{mol \cdot K} \times 223 \, \text{K}}{35.5 \, \text{L}} \][/tex]
Calculate the numerator:
[tex]\[ (0.540 \, \text{mol}) \times (8.314 \frac{L \cdot kPa}{mol \cdot K}) \times (223 \, \text{K}) = 1001.736564 \, \text{kPa} \cdot \text{L} \][/tex]
And then divide by the volume:
[tex]\[ P = \frac{1001.736564 \, \text{kPa} \cdot \text{L}}{35.5 \, \text{L}} \approx 28.202 \, \text{kPa} \][/tex]
Therefore, the pressure of the gas is:
[tex]\[ P \approx 28.2 \, \text{kPa} \][/tex]
So, the correct answer is:
[tex]\[ 28.2 \, \text{kPa} \][/tex]
[tex]\[ PV = nRT \][/tex]
Where:
- [tex]\( P \)[/tex] is the pressure in kPa,
- [tex]\( V \)[/tex] is the volume in liters,
- [tex]\( n \)[/tex] is the number of moles,
- [tex]\( R \)[/tex] is the ideal gas constant ([tex]\( 8.314 \frac{L \cdot kPa}{mol \cdot K} \)[/tex]),
- [tex]\( T \)[/tex] is the temperature in Kelvin.
Given the variables in the problem:
- [tex]\( n = 0.540 \)[/tex] moles,
- [tex]\( V = 35.5 \)[/tex] liters,
- [tex]\( T = 223 \)[/tex] Kelvin,
- [tex]\( R = 8.314 \frac{L \cdot kPa}{mol \cdot K} \)[/tex],
We need to solve for [tex]\( P \)[/tex]. The ideal gas law rearranged to solve for [tex]\( P \)[/tex] is:
[tex]\[ P = \frac{nRT}{V} \][/tex]
Substitute the given values into the equation:
[tex]\[ P = \frac{0.540 \, \text{mol} \times 8.314 \frac{L \cdot kPa}{mol \cdot K} \times 223 \, \text{K}}{35.5 \, \text{L}} \][/tex]
Calculate the numerator:
[tex]\[ (0.540 \, \text{mol}) \times (8.314 \frac{L \cdot kPa}{mol \cdot K}) \times (223 \, \text{K}) = 1001.736564 \, \text{kPa} \cdot \text{L} \][/tex]
And then divide by the volume:
[tex]\[ P = \frac{1001.736564 \, \text{kPa} \cdot \text{L}}{35.5 \, \text{L}} \approx 28.202 \, \text{kPa} \][/tex]
Therefore, the pressure of the gas is:
[tex]\[ P \approx 28.2 \, \text{kPa} \][/tex]
So, the correct answer is:
[tex]\[ 28.2 \, \text{kPa} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.