Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Certainly! Let's tackle each part of the problem step-by-step.
### Part (a): Graph the function [tex]\( f(x) = \frac{191}{1+4 e^{-3x}} \)[/tex] for [tex]\( x=0 \)[/tex] to [tex]\( x=10 \)[/tex].
To graph the function [tex]\( f(x) = \frac{191}{1+4 e^{-3x}} \)[/tex], we need to plot it over the range [tex]\( x = 0 \)[/tex] to [tex]\( x = 10 \)[/tex].
The function [tex]\( f(x) \)[/tex] is a type of logistic function, which typically starts at some value (close to the initial term) and asymptotically approaches a maximum value. It tends to increase monotonically. Below is the general trend you would expect:
- At [tex]\( x=0 \)[/tex], the function starts at a certain value,
- As [tex]\( x \)[/tex] increases, [tex]\( f(x) \)[/tex] increases and eventually approaches a limiting value.
### Part (b): Find [tex]\( f(0) \)[/tex] and [tex]\( f(10) \)[/tex].
To find [tex]\( f(0) \)[/tex]:
[tex]\[ f(0) = \frac{191}{1 + 4 e^{-3(0)}} = \frac{191}{1 + 4 e^0} = \frac{191}{1 + 4 \cdot 1} = \frac{191}{5} = 38.2 \][/tex]
To find [tex]\( f(10) \)[/tex]:
[tex]\[ f(10) = \frac{191}{1 + 4 e^{-3(10)}} = \frac{191}{1 + 4 e^{-30}} \][/tex]
Since [tex]\( e^{-30} \)[/tex] is a very small number, it can be approximated as zero:
[tex]\[ f(10) \approx \frac{191}{1 + 0} = 191 \][/tex]
### Part (c): Is this function increasing or decreasing?
To determine the behavior of the function, we need to compute its derivative [tex]\( f'(x) \)[/tex] and analyze its sign.
Let's denote the function as:
[tex]\[ f(x) = \frac{191}{1 + 4 e^{-3x}} \][/tex]
Taking the derivative [tex]\( f'(x) \)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx}\left(\frac{191}{1 + 4 e^{-3x}}\right) \][/tex]
Using the chain rule:
[tex]\[ f'(x) = 191 \cdot \frac{d}{dx}\left(1 + 4 e^{-3x}\right)^{-1} \][/tex]
[tex]\[ f'(x) = 191 \cdot \left(1 + 4 e^{-3x}\right)^{-2} \cdot \left(-4 \cdot (-3) e^{-3x}\right) \][/tex]
[tex]\[ f'(x) = 191 \cdot \left(1 + 4 e^{-3x}\right)^{-2} \cdot 12 e^{-3x} \][/tex]
[tex]\[ f'(x) = \frac{191 \cdot 12 e^{-3x}}{\left(1 + 4 e^{-3x}\right)^2} \][/tex]
Since [tex]\( e^{-3x} \)[/tex] is always positive, [tex]\( f'(x) \)[/tex] is positive for all [tex]\( x \)[/tex]. Therefore, the function [tex]\( f(x) \)[/tex] is increasing.
### Part (d): What is the limiting value of this function?
To determine the limiting value as [tex]\( x \to \infty \)[/tex]:
[tex]\[ \lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{191}{1 + 4 e^{-3x}} \][/tex]
As [tex]\( x \to \infty \)[/tex], [tex]\( e^{-3x} \to 0 \)[/tex]:
[tex]\[ \lim_{x \to \infty} f(x) = \frac{191}{1 + 0} = 191 \][/tex]
The limiting value of the function as [tex]\( x \)[/tex] approaches infinity is 191.
### Graph Options
Given the analysis above, the correct graph should:
1. Start at [tex]\( f(0) = 38.2 \)[/tex],
2. Increase steadily and asymptotically approach [tex]\( f(x) = 191 \)[/tex].
Without seeing the specific graphs labeled A, B, C, and D, I can't choose the exact one, but you would select the graph matching this behavior.
Thus, the answers are:
- Part (b): [tex]\( f(0) = 38.2 \)[/tex], [tex]\( f(10) \approx 191 \)[/tex]
- Part (c): The function is increasing.
- Part (d): The limiting value is 191.
### Part (a): Graph the function [tex]\( f(x) = \frac{191}{1+4 e^{-3x}} \)[/tex] for [tex]\( x=0 \)[/tex] to [tex]\( x=10 \)[/tex].
To graph the function [tex]\( f(x) = \frac{191}{1+4 e^{-3x}} \)[/tex], we need to plot it over the range [tex]\( x = 0 \)[/tex] to [tex]\( x = 10 \)[/tex].
The function [tex]\( f(x) \)[/tex] is a type of logistic function, which typically starts at some value (close to the initial term) and asymptotically approaches a maximum value. It tends to increase monotonically. Below is the general trend you would expect:
- At [tex]\( x=0 \)[/tex], the function starts at a certain value,
- As [tex]\( x \)[/tex] increases, [tex]\( f(x) \)[/tex] increases and eventually approaches a limiting value.
### Part (b): Find [tex]\( f(0) \)[/tex] and [tex]\( f(10) \)[/tex].
To find [tex]\( f(0) \)[/tex]:
[tex]\[ f(0) = \frac{191}{1 + 4 e^{-3(0)}} = \frac{191}{1 + 4 e^0} = \frac{191}{1 + 4 \cdot 1} = \frac{191}{5} = 38.2 \][/tex]
To find [tex]\( f(10) \)[/tex]:
[tex]\[ f(10) = \frac{191}{1 + 4 e^{-3(10)}} = \frac{191}{1 + 4 e^{-30}} \][/tex]
Since [tex]\( e^{-30} \)[/tex] is a very small number, it can be approximated as zero:
[tex]\[ f(10) \approx \frac{191}{1 + 0} = 191 \][/tex]
### Part (c): Is this function increasing or decreasing?
To determine the behavior of the function, we need to compute its derivative [tex]\( f'(x) \)[/tex] and analyze its sign.
Let's denote the function as:
[tex]\[ f(x) = \frac{191}{1 + 4 e^{-3x}} \][/tex]
Taking the derivative [tex]\( f'(x) \)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx}\left(\frac{191}{1 + 4 e^{-3x}}\right) \][/tex]
Using the chain rule:
[tex]\[ f'(x) = 191 \cdot \frac{d}{dx}\left(1 + 4 e^{-3x}\right)^{-1} \][/tex]
[tex]\[ f'(x) = 191 \cdot \left(1 + 4 e^{-3x}\right)^{-2} \cdot \left(-4 \cdot (-3) e^{-3x}\right) \][/tex]
[tex]\[ f'(x) = 191 \cdot \left(1 + 4 e^{-3x}\right)^{-2} \cdot 12 e^{-3x} \][/tex]
[tex]\[ f'(x) = \frac{191 \cdot 12 e^{-3x}}{\left(1 + 4 e^{-3x}\right)^2} \][/tex]
Since [tex]\( e^{-3x} \)[/tex] is always positive, [tex]\( f'(x) \)[/tex] is positive for all [tex]\( x \)[/tex]. Therefore, the function [tex]\( f(x) \)[/tex] is increasing.
### Part (d): What is the limiting value of this function?
To determine the limiting value as [tex]\( x \to \infty \)[/tex]:
[tex]\[ \lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{191}{1 + 4 e^{-3x}} \][/tex]
As [tex]\( x \to \infty \)[/tex], [tex]\( e^{-3x} \to 0 \)[/tex]:
[tex]\[ \lim_{x \to \infty} f(x) = \frac{191}{1 + 0} = 191 \][/tex]
The limiting value of the function as [tex]\( x \)[/tex] approaches infinity is 191.
### Graph Options
Given the analysis above, the correct graph should:
1. Start at [tex]\( f(0) = 38.2 \)[/tex],
2. Increase steadily and asymptotically approach [tex]\( f(x) = 191 \)[/tex].
Without seeing the specific graphs labeled A, B, C, and D, I can't choose the exact one, but you would select the graph matching this behavior.
Thus, the answers are:
- Part (b): [tex]\( f(0) = 38.2 \)[/tex], [tex]\( f(10) \approx 191 \)[/tex]
- Part (c): The function is increasing.
- Part (d): The limiting value is 191.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.