At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! Let's tackle each part of the problem step-by-step.
### Part (a): Graph the function [tex]\( f(x) = \frac{191}{1+4 e^{-3x}} \)[/tex] for [tex]\( x=0 \)[/tex] to [tex]\( x=10 \)[/tex].
To graph the function [tex]\( f(x) = \frac{191}{1+4 e^{-3x}} \)[/tex], we need to plot it over the range [tex]\( x = 0 \)[/tex] to [tex]\( x = 10 \)[/tex].
The function [tex]\( f(x) \)[/tex] is a type of logistic function, which typically starts at some value (close to the initial term) and asymptotically approaches a maximum value. It tends to increase monotonically. Below is the general trend you would expect:
- At [tex]\( x=0 \)[/tex], the function starts at a certain value,
- As [tex]\( x \)[/tex] increases, [tex]\( f(x) \)[/tex] increases and eventually approaches a limiting value.
### Part (b): Find [tex]\( f(0) \)[/tex] and [tex]\( f(10) \)[/tex].
To find [tex]\( f(0) \)[/tex]:
[tex]\[ f(0) = \frac{191}{1 + 4 e^{-3(0)}} = \frac{191}{1 + 4 e^0} = \frac{191}{1 + 4 \cdot 1} = \frac{191}{5} = 38.2 \][/tex]
To find [tex]\( f(10) \)[/tex]:
[tex]\[ f(10) = \frac{191}{1 + 4 e^{-3(10)}} = \frac{191}{1 + 4 e^{-30}} \][/tex]
Since [tex]\( e^{-30} \)[/tex] is a very small number, it can be approximated as zero:
[tex]\[ f(10) \approx \frac{191}{1 + 0} = 191 \][/tex]
### Part (c): Is this function increasing or decreasing?
To determine the behavior of the function, we need to compute its derivative [tex]\( f'(x) \)[/tex] and analyze its sign.
Let's denote the function as:
[tex]\[ f(x) = \frac{191}{1 + 4 e^{-3x}} \][/tex]
Taking the derivative [tex]\( f'(x) \)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx}\left(\frac{191}{1 + 4 e^{-3x}}\right) \][/tex]
Using the chain rule:
[tex]\[ f'(x) = 191 \cdot \frac{d}{dx}\left(1 + 4 e^{-3x}\right)^{-1} \][/tex]
[tex]\[ f'(x) = 191 \cdot \left(1 + 4 e^{-3x}\right)^{-2} \cdot \left(-4 \cdot (-3) e^{-3x}\right) \][/tex]
[tex]\[ f'(x) = 191 \cdot \left(1 + 4 e^{-3x}\right)^{-2} \cdot 12 e^{-3x} \][/tex]
[tex]\[ f'(x) = \frac{191 \cdot 12 e^{-3x}}{\left(1 + 4 e^{-3x}\right)^2} \][/tex]
Since [tex]\( e^{-3x} \)[/tex] is always positive, [tex]\( f'(x) \)[/tex] is positive for all [tex]\( x \)[/tex]. Therefore, the function [tex]\( f(x) \)[/tex] is increasing.
### Part (d): What is the limiting value of this function?
To determine the limiting value as [tex]\( x \to \infty \)[/tex]:
[tex]\[ \lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{191}{1 + 4 e^{-3x}} \][/tex]
As [tex]\( x \to \infty \)[/tex], [tex]\( e^{-3x} \to 0 \)[/tex]:
[tex]\[ \lim_{x \to \infty} f(x) = \frac{191}{1 + 0} = 191 \][/tex]
The limiting value of the function as [tex]\( x \)[/tex] approaches infinity is 191.
### Graph Options
Given the analysis above, the correct graph should:
1. Start at [tex]\( f(0) = 38.2 \)[/tex],
2. Increase steadily and asymptotically approach [tex]\( f(x) = 191 \)[/tex].
Without seeing the specific graphs labeled A, B, C, and D, I can't choose the exact one, but you would select the graph matching this behavior.
Thus, the answers are:
- Part (b): [tex]\( f(0) = 38.2 \)[/tex], [tex]\( f(10) \approx 191 \)[/tex]
- Part (c): The function is increasing.
- Part (d): The limiting value is 191.
### Part (a): Graph the function [tex]\( f(x) = \frac{191}{1+4 e^{-3x}} \)[/tex] for [tex]\( x=0 \)[/tex] to [tex]\( x=10 \)[/tex].
To graph the function [tex]\( f(x) = \frac{191}{1+4 e^{-3x}} \)[/tex], we need to plot it over the range [tex]\( x = 0 \)[/tex] to [tex]\( x = 10 \)[/tex].
The function [tex]\( f(x) \)[/tex] is a type of logistic function, which typically starts at some value (close to the initial term) and asymptotically approaches a maximum value. It tends to increase monotonically. Below is the general trend you would expect:
- At [tex]\( x=0 \)[/tex], the function starts at a certain value,
- As [tex]\( x \)[/tex] increases, [tex]\( f(x) \)[/tex] increases and eventually approaches a limiting value.
### Part (b): Find [tex]\( f(0) \)[/tex] and [tex]\( f(10) \)[/tex].
To find [tex]\( f(0) \)[/tex]:
[tex]\[ f(0) = \frac{191}{1 + 4 e^{-3(0)}} = \frac{191}{1 + 4 e^0} = \frac{191}{1 + 4 \cdot 1} = \frac{191}{5} = 38.2 \][/tex]
To find [tex]\( f(10) \)[/tex]:
[tex]\[ f(10) = \frac{191}{1 + 4 e^{-3(10)}} = \frac{191}{1 + 4 e^{-30}} \][/tex]
Since [tex]\( e^{-30} \)[/tex] is a very small number, it can be approximated as zero:
[tex]\[ f(10) \approx \frac{191}{1 + 0} = 191 \][/tex]
### Part (c): Is this function increasing or decreasing?
To determine the behavior of the function, we need to compute its derivative [tex]\( f'(x) \)[/tex] and analyze its sign.
Let's denote the function as:
[tex]\[ f(x) = \frac{191}{1 + 4 e^{-3x}} \][/tex]
Taking the derivative [tex]\( f'(x) \)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx}\left(\frac{191}{1 + 4 e^{-3x}}\right) \][/tex]
Using the chain rule:
[tex]\[ f'(x) = 191 \cdot \frac{d}{dx}\left(1 + 4 e^{-3x}\right)^{-1} \][/tex]
[tex]\[ f'(x) = 191 \cdot \left(1 + 4 e^{-3x}\right)^{-2} \cdot \left(-4 \cdot (-3) e^{-3x}\right) \][/tex]
[tex]\[ f'(x) = 191 \cdot \left(1 + 4 e^{-3x}\right)^{-2} \cdot 12 e^{-3x} \][/tex]
[tex]\[ f'(x) = \frac{191 \cdot 12 e^{-3x}}{\left(1 + 4 e^{-3x}\right)^2} \][/tex]
Since [tex]\( e^{-3x} \)[/tex] is always positive, [tex]\( f'(x) \)[/tex] is positive for all [tex]\( x \)[/tex]. Therefore, the function [tex]\( f(x) \)[/tex] is increasing.
### Part (d): What is the limiting value of this function?
To determine the limiting value as [tex]\( x \to \infty \)[/tex]:
[tex]\[ \lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{191}{1 + 4 e^{-3x}} \][/tex]
As [tex]\( x \to \infty \)[/tex], [tex]\( e^{-3x} \to 0 \)[/tex]:
[tex]\[ \lim_{x \to \infty} f(x) = \frac{191}{1 + 0} = 191 \][/tex]
The limiting value of the function as [tex]\( x \)[/tex] approaches infinity is 191.
### Graph Options
Given the analysis above, the correct graph should:
1. Start at [tex]\( f(0) = 38.2 \)[/tex],
2. Increase steadily and asymptotically approach [tex]\( f(x) = 191 \)[/tex].
Without seeing the specific graphs labeled A, B, C, and D, I can't choose the exact one, but you would select the graph matching this behavior.
Thus, the answers are:
- Part (b): [tex]\( f(0) = 38.2 \)[/tex], [tex]\( f(10) \approx 191 \)[/tex]
- Part (c): The function is increasing.
- Part (d): The limiting value is 191.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.