Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the value of [tex]\( x \)[/tex] in the equation [tex]\( 19 + 2 \ln x = 25 \)[/tex], follow these steps:
1. Isolate the logarithmic term:
[tex]\[ 19 + 2 \ln x = 25 \][/tex]
First, subtract 19 from both sides to move 19 to the other side of the equation:
[tex]\[ 2 \ln x = 25 - 19 \][/tex]
Simplifying the right side gives:
[tex]\[ 2 \ln x = 6 \][/tex]
2. Solve for the natural logarithm:
Divide both sides by 2 to isolate [tex]\( \ln x \)[/tex]:
[tex]\[ \ln x = \frac{6}{2} \][/tex]
Simplifying gives:
[tex]\[ \ln x = 3 \][/tex]
3. Exponentiate to remove the natural logarithm:
Recall that [tex]\( \ln x \)[/tex] is the natural logarithm, which has the base [tex]\( e \)[/tex]. To solve for [tex]\( x \)[/tex], exponentiate both sides with base [tex]\( e \)[/tex]:
[tex]\[ x = e^3 \][/tex]
4. Calculate the numerical value:
The value of [tex]\( e^3 \)[/tex] is approximately:
[tex]\[ 20.085536923187668 \][/tex]
Therefore, the value of [tex]\( x \)[/tex] that solves the equation [tex]\( 19 + 2 \ln x = 25 \)[/tex] is closest to:
D. 20.09
1. Isolate the logarithmic term:
[tex]\[ 19 + 2 \ln x = 25 \][/tex]
First, subtract 19 from both sides to move 19 to the other side of the equation:
[tex]\[ 2 \ln x = 25 - 19 \][/tex]
Simplifying the right side gives:
[tex]\[ 2 \ln x = 6 \][/tex]
2. Solve for the natural logarithm:
Divide both sides by 2 to isolate [tex]\( \ln x \)[/tex]:
[tex]\[ \ln x = \frac{6}{2} \][/tex]
Simplifying gives:
[tex]\[ \ln x = 3 \][/tex]
3. Exponentiate to remove the natural logarithm:
Recall that [tex]\( \ln x \)[/tex] is the natural logarithm, which has the base [tex]\( e \)[/tex]. To solve for [tex]\( x \)[/tex], exponentiate both sides with base [tex]\( e \)[/tex]:
[tex]\[ x = e^3 \][/tex]
4. Calculate the numerical value:
The value of [tex]\( e^3 \)[/tex] is approximately:
[tex]\[ 20.085536923187668 \][/tex]
Therefore, the value of [tex]\( x \)[/tex] that solves the equation [tex]\( 19 + 2 \ln x = 25 \)[/tex] is closest to:
D. 20.09
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.