Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the given quadratic equation [tex]\(7x^2 + 10x + 3 = 0\)[/tex], we need to follow these steps:
1. Identify the coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] from the quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex]:
- [tex]\(a = 7\)[/tex]
- [tex]\(b = 10\)[/tex]
- [tex]\(c = 3\)[/tex]
2. Calculate the discriminant ([tex]\(D\)[/tex]) using the formula:
[tex]\[ D = b^2 - 4ac \][/tex]
3. Substitute the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] into the discriminant formula:
[tex]\[ D = (10)^2 - 4(7)(3) \][/tex]
4. Perform the calculations:
[tex]\[ 10^2 = 100 \][/tex]
[tex]\[ 4 \cdot 7 = 28 \][/tex]
[tex]\[ 28 \cdot 3 = 84 \][/tex]
[tex]\[ D = 100 - 84 = 16 \][/tex]
So, the discriminant [tex]\(D\)[/tex] is:
[tex]\[ D = 16 \][/tex]
Next, we interpret the value of the discriminant:
5. If [tex]\(D > 0\)[/tex], the quadratic equation has two distinct real solutions.
6. If [tex]\(D = 0\)[/tex], the quadratic equation has one real repeated solution.
7. If [tex]\(D < 0\)[/tex], the quadratic equation has two complex solutions.
Since [tex]\(D = 16\)[/tex] ([tex]\(D > 0\)[/tex]), the quadratic equation [tex]\(7x^2 + 10x + 3 = 0\)[/tex] has two real and distinct solutions.
Therefore, the final result is:
The discriminant [tex]\(D = 16\)[/tex]. There are 2 real and distinct solutions to the quadratic equation with this discriminant.
1. Identify the coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] from the quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex]:
- [tex]\(a = 7\)[/tex]
- [tex]\(b = 10\)[/tex]
- [tex]\(c = 3\)[/tex]
2. Calculate the discriminant ([tex]\(D\)[/tex]) using the formula:
[tex]\[ D = b^2 - 4ac \][/tex]
3. Substitute the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] into the discriminant formula:
[tex]\[ D = (10)^2 - 4(7)(3) \][/tex]
4. Perform the calculations:
[tex]\[ 10^2 = 100 \][/tex]
[tex]\[ 4 \cdot 7 = 28 \][/tex]
[tex]\[ 28 \cdot 3 = 84 \][/tex]
[tex]\[ D = 100 - 84 = 16 \][/tex]
So, the discriminant [tex]\(D\)[/tex] is:
[tex]\[ D = 16 \][/tex]
Next, we interpret the value of the discriminant:
5. If [tex]\(D > 0\)[/tex], the quadratic equation has two distinct real solutions.
6. If [tex]\(D = 0\)[/tex], the quadratic equation has one real repeated solution.
7. If [tex]\(D < 0\)[/tex], the quadratic equation has two complex solutions.
Since [tex]\(D = 16\)[/tex] ([tex]\(D > 0\)[/tex]), the quadratic equation [tex]\(7x^2 + 10x + 3 = 0\)[/tex] has two real and distinct solutions.
Therefore, the final result is:
The discriminant [tex]\(D = 16\)[/tex]. There are 2 real and distinct solutions to the quadratic equation with this discriminant.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.