Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Rewrite the absolute value function [tex]f(x) = -4|x + 1| + 2[/tex] as a piecewise function. Show all of your work.

Sagot :

Certainly!

To rewrite the absolute value function [tex]\( f(x) = -4|x+1| + 2 \)[/tex] as a piecewise function, we need to consider the definition of the absolute value function, which is given by:

[tex]\[ |x+1| = \begin{cases} x + 1 & \text{if } x + 1 \geq 0 \\ -(x + 1) & \text{if } x + 1 < 0 \end{cases} \][/tex]

This means we have two cases to consider based on the value of [tex]\( x \)[/tex]:

1. Case 1: [tex]\( x + 1 \geq 0 \)[/tex]

This inequality can be simplified to:
[tex]\[ x \geq -1 \][/tex]

In this case, the absolute value function [tex]\( |x+1| \)[/tex] can be replaced by [tex]\( x + 1 \)[/tex]. Therefore,
[tex]\[ f(x) = -4|x+1| + 2 = -4(x+1) + 2 \][/tex]

Simplifying the expression:
[tex]\[ f(x) = -4x - 4 + 2 \][/tex]
[tex]\[ f(x) = -4x - 2 \][/tex]

2. Case 2: [tex]\( x + 1 < 0 \)[/tex]

This inequality can be simplified to:
[tex]\[ x < -1 \][/tex]

In this case, the absolute value function [tex]\( |x+1| \)[/tex] can be replaced by [tex]\( -(x + 1) \)[/tex]. Therefore,
[tex]\[ f(x) = -4|x+1| + 2 = -4(-(x+1)) + 2 \][/tex]

Simplifying the expression:
[tex]\[ f(x) = -4(-x - 1) + 2 \][/tex]
[tex]\[ f(x) = 4x + 4 + 2 \][/tex]
[tex]\[ f(x) = 4x + 6 \][/tex]

So, the original absolute value function can be rewritten as a piecewise function:

[tex]\[ f(x) = \begin{cases} -4(x + 1) + 2 \quad \text{if } x \geq -1 \\ -4(-(x + 1)) + 2 \quad \text{if } x < -1 \end{cases} \][/tex]

Putting this all together, we get the piecewise function:

[tex]\[ f(x) = \begin{cases} -4x - 2 \quad \text{if } x \geq -1 \\ 4x + 6 \quad \text{if } x < -1 \end{cases} \][/tex]

Hence, the function [tex]\( f(x) = -4|x+1| + 2 \)[/tex] expressed as a piecewise function is:

[tex]\[ f(x) = \begin{cases} -4(x + 1) + 2 \quad \text{if } x \geq -1 \\ -4(-(x + 1)) + 2 \quad \text{if } x < -1 \end{cases} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.