Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the range of the function [tex]\( f(x) = -|x-4| + 5 \)[/tex], let's analyze it step by step.
1. Understand the absolute value function:
The function [tex]\( f(x) = -|x-4| + 5 \)[/tex] contains an absolute value component [tex]\(|x-4|\)[/tex]. Absolute values are always non-negative, meaning [tex]\(|x-4| \geq 0\)[/tex] for any real number [tex]\(x\)[/tex].
2. Effect of the negative sign:
When we apply the negative sign, [tex]\(-|x-4|\)[/tex], the range of [tex]\(|x-4|\)[/tex] changes accordingly:
- Since [tex]\(|x-4|\)[/tex] is always non-negative ([tex]\(|x-4| \geq 0\)[/tex]), [tex]\(-|x-4|\)[/tex] will be non-positive ([tex]\(-|x-4| \leq 0\)[/tex]), meaning [tex]\(-|x-4|\)[/tex] takes values from [tex]\(0\)[/tex] to negative infinity.
- In other words, [tex]\(-|x-4|\)[/tex] can take any value from [tex]\(-\infty\)[/tex] up to [tex]\(0\)[/tex] (inclusive).
3. Shifting the range by adding 5:
Adding 5 to [tex]\(-|x-4|\)[/tex] will shift its entire range upwards by 5 units:
- If [tex]\(-|x-4|\)[/tex] ranges from [tex]\(-\infty\)[/tex] to [tex]\(0\)[/tex], then [tex]\(-|x-4| + 5\)[/tex] will shift this range to [tex]\(-\infty + 5\)[/tex] to [tex]\(0 + 5\)[/tex].
- Therefore, after adding 5, the new range becomes [tex]\(-\infty\)[/tex] to [tex]\(5\)[/tex] (inclusive).
4. Conclusion:
The highest value of [tex]\( f(x) \)[/tex] occurs when [tex]\(|x-4| = 0\)[/tex], which results in [tex]\( f(x) = 5 \)[/tex]. Thus, the value 5 is included in the range.
Given this analysis, we conclude that the range of the function [tex]\( f(x) = -|x-4| + 5 \)[/tex] is [tex]\((-\infty, 5]\)[/tex].
Hence, the correct option is:
A. [tex]\( (-\infty, 5] \)[/tex]
1. Understand the absolute value function:
The function [tex]\( f(x) = -|x-4| + 5 \)[/tex] contains an absolute value component [tex]\(|x-4|\)[/tex]. Absolute values are always non-negative, meaning [tex]\(|x-4| \geq 0\)[/tex] for any real number [tex]\(x\)[/tex].
2. Effect of the negative sign:
When we apply the negative sign, [tex]\(-|x-4|\)[/tex], the range of [tex]\(|x-4|\)[/tex] changes accordingly:
- Since [tex]\(|x-4|\)[/tex] is always non-negative ([tex]\(|x-4| \geq 0\)[/tex]), [tex]\(-|x-4|\)[/tex] will be non-positive ([tex]\(-|x-4| \leq 0\)[/tex]), meaning [tex]\(-|x-4|\)[/tex] takes values from [tex]\(0\)[/tex] to negative infinity.
- In other words, [tex]\(-|x-4|\)[/tex] can take any value from [tex]\(-\infty\)[/tex] up to [tex]\(0\)[/tex] (inclusive).
3. Shifting the range by adding 5:
Adding 5 to [tex]\(-|x-4|\)[/tex] will shift its entire range upwards by 5 units:
- If [tex]\(-|x-4|\)[/tex] ranges from [tex]\(-\infty\)[/tex] to [tex]\(0\)[/tex], then [tex]\(-|x-4| + 5\)[/tex] will shift this range to [tex]\(-\infty + 5\)[/tex] to [tex]\(0 + 5\)[/tex].
- Therefore, after adding 5, the new range becomes [tex]\(-\infty\)[/tex] to [tex]\(5\)[/tex] (inclusive).
4. Conclusion:
The highest value of [tex]\( f(x) \)[/tex] occurs when [tex]\(|x-4| = 0\)[/tex], which results in [tex]\( f(x) = 5 \)[/tex]. Thus, the value 5 is included in the range.
Given this analysis, we conclude that the range of the function [tex]\( f(x) = -|x-4| + 5 \)[/tex] is [tex]\((-\infty, 5]\)[/tex].
Hence, the correct option is:
A. [tex]\( (-\infty, 5] \)[/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.