Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Rewrite [tex]$9x^2 + 3xy + 15x + 5y$[/tex] in factored form.

A. [tex]$(3x + 3)(5x + y)$[/tex]

B. [tex][tex]$(3x + 5)(3x + y)$[/tex][/tex]

C. [tex]$(3x + 5y)(3x + 1)$[/tex]

D. [tex]$(3x + y)(5x + 3)$[/tex]


Sagot :

To rewrite the polynomial [tex]\( 9x^2 + 3xy + 15x + 5y \)[/tex] in factored form, follow these steps:

1. Identify and group terms: We begin by examining the given polynomial [tex]\( 9x^2 + 3xy + 15x + 5y \)[/tex].
2. Factor by grouping: To factor by grouping, we look for common factors in parts of the polynomial.

[tex]\( 9x^2 + 3xy + 15x + 5y \)[/tex]

Notice that we can group the terms as [tex]\((9x^2 + 3xy)\)[/tex] and [tex]\((15x + 5y)\)[/tex]:

[tex]\[ 9x^2 + 3xy + 15x + 5y = 3x(3x + y) + 5(3x + y) \][/tex]

Here, [tex]\(3x\)[/tex] is a common factor in the first group, and [tex]\(5\)[/tex] is a common factor in the second group.

3. Factor out the common binomial: Now, notice that [tex]\((3x + y)\)[/tex] is common in both groups:

[tex]\[ 3x(3x + y) + 5(3x + y) = (3x + y)(3x + 5) \][/tex]

The polynomial can now be written in factored form as [tex]\((3x + y)(3x + 5)\)[/tex].

Therefore, the correct answer is:
[tex]\[ (3x + 5)(3x + y) \][/tex]