Answered

Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

What is the greatest common factor of [tex]4k, 18k^4[/tex], and [tex]12[/tex]?

A. 2
B. 4
C. [tex]2k[/tex]
D. [tex]4k[/tex]


Sagot :

To determine the greatest common factor (GCF) of the expressions [tex]\( 4k \)[/tex], [tex]\( 18k^4 \)[/tex], and [tex]\( 12 \)[/tex], we need to follow these steps.

1. Identify the constants in each term:
- The constants are the numerical coefficients in front of [tex]\( k \)[/tex]. Here, the constants are 4 (from [tex]\( 4k \)[/tex]), 18 (from [tex]\( 18k^4 \)[/tex]), and 12 (which stands alone).

2. Find the greatest common factor of the constants:
- The greatest common factor (GCF) of 4, 18, and 12 is the largest number that evenly divides each of these numbers.
- We list the factors of each number:
- Factors of 4: 1, 2, 4
- Factors of 18: 1, 2, 3, 6, 9, 18
- Factors of 12: 1, 2, 3, 4, 6, 12
- The common factors are 1 and 2. The largest of these common factors is 2.

3. Identify the variables in each term:
- The terms involving [tex]\( k \)[/tex] are [tex]\( 4k \)[/tex] and [tex]\( 18k^4 \)[/tex]. The term [tex]\( 12 \)[/tex] does not contain [tex]\( k \)[/tex].

4. Find the lowest power of [tex]\( k \)[/tex] among the terms that contain [tex]\( k \)[/tex]:
- [tex]\( 4k \)[/tex] contains [tex]\( k \)[/tex] raised to the power of 1.
- [tex]\( 18k^4 \)[/tex] contains [tex]\( k \)[/tex] raised to the power of 4.
- The lowest power of [tex]\( k \)[/tex] is [tex]\( k^1 \)[/tex] or simply [tex]\( k \)[/tex].

5. Combine the GCF of the constants and the variables:
- The GCF of the numerical coefficients is 2.
- The lowest power of the common variable [tex]\( k \)[/tex] is [tex]\( k \)[/tex].

Therefore, the greatest common factor of the given expressions [tex]\( 4k, 18k^4, \)[/tex] and [tex]\( 12 \)[/tex] is [tex]\( 2k \)[/tex].

The correct answer is [tex]\( 2k \)[/tex].