Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the height to which the ball reaches, we can use the principles of kinematics. Specifically, we'll use one of the kinematic equations related to the motion under uniform acceleration.
Let's outline the variables:
- Initial velocity ([tex]\( u \)[/tex]) = 10 m/s
- Final velocity at the highest point ([tex]\( v \)[/tex]) = 0 m/s (since the ball will momentarily stop before falling back down)
- Acceleration ([tex]\( a \)[/tex]) = -9.8 m/s² (the negative sign indicates that it is directed downward due to gravity)
We can use the following kinematic equation:
[tex]\[ v^2 = u^2 + 2as \][/tex]
Rearrange the equation to solve for [tex]\( s \)[/tex] (displacement or height in this context):
[tex]\[ 0 = u^2 + 2as \][/tex]
[tex]\[ 0 = (10)^2 + 2(-9.8)s \][/tex]
[tex]\[ 0 = 100 - 19.6s \][/tex]
Now, isolate [tex]\( s \)[/tex]:
[tex]\[ 19.6s = 100 \][/tex]
[tex]\[ s = \frac{100}{19.6} \][/tex]
[tex]\[ s ≈ 5.1 \, \text{m} \][/tex]
Therefore, the height to which the ball goes is approximately [tex]\(\mathbf{5.1 \, \text{m}}\)[/tex].
Given the options:
A. 10 m
B. 5.1 m
C. 3.2 m
D. 7.5 m
The correct answer is B. 5.1 m.
Let's outline the variables:
- Initial velocity ([tex]\( u \)[/tex]) = 10 m/s
- Final velocity at the highest point ([tex]\( v \)[/tex]) = 0 m/s (since the ball will momentarily stop before falling back down)
- Acceleration ([tex]\( a \)[/tex]) = -9.8 m/s² (the negative sign indicates that it is directed downward due to gravity)
We can use the following kinematic equation:
[tex]\[ v^2 = u^2 + 2as \][/tex]
Rearrange the equation to solve for [tex]\( s \)[/tex] (displacement or height in this context):
[tex]\[ 0 = u^2 + 2as \][/tex]
[tex]\[ 0 = (10)^2 + 2(-9.8)s \][/tex]
[tex]\[ 0 = 100 - 19.6s \][/tex]
Now, isolate [tex]\( s \)[/tex]:
[tex]\[ 19.6s = 100 \][/tex]
[tex]\[ s = \frac{100}{19.6} \][/tex]
[tex]\[ s ≈ 5.1 \, \text{m} \][/tex]
Therefore, the height to which the ball goes is approximately [tex]\(\mathbf{5.1 \, \text{m}}\)[/tex].
Given the options:
A. 10 m
B. 5.1 m
C. 3.2 m
D. 7.5 m
The correct answer is B. 5.1 m.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.