Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure! Let’s work through each part step-by-step given that [tex]\( X \)[/tex] is a normal random variable with a mean ([tex]\(\mu\)[/tex]) of 68. We assume a standard normal distribution for simplicity since the standard deviation ([tex]\(\sigma\)[/tex]) was not provided.
### Part a) [tex]\( P(X < 68) \)[/tex]
Since [tex]\( X \)[/tex] follows a normal distribution with a mean of 68, the cumulative probability of [tex]\( X \)[/tex] being less than the mean itself is 0.5.
[tex]\[ P(X < 68) = 0.5 \][/tex]
### Part b) The probability that [tex]\( X \)[/tex] is less than 54
Given the normal distribution parameters:
[tex]\[ P(X < 54) \approx 7.7935368191928 \times 10^{-45} \][/tex]
This value is extremely close to zero.
### Part c) [tex]\( P(68 < X < 82) \)[/tex]
To find this probability, we need the cumulative probability for both [tex]\( X = 82 \)[/tex] and [tex]\( X = 68 \)[/tex]. The desired probability is the difference between these cumulative probabilities.
[tex]\[ P(68 < X < 82) \approx 0.5 \][/tex]
### Part d) [tex]\( P(X < 82) \)[/tex]
For [tex]\( X = 82 \)[/tex]:
[tex]\[ P(X < 82) \approx 1.0 \][/tex]
This means that it is almost certain that [tex]\( X \)[/tex] is less than 82.
### Part e) The probability that [tex]\( X \)[/tex] is between 54 and 82
This is the difference in cumulative probabilities between [tex]\( X = 82 \)[/tex] and [tex]\( X = 54 \)[/tex]:
[tex]\[ P(54 < X < 82) \approx 1.0 \][/tex]
### Part f) The probability [tex]\( X \)[/tex] is less than 54 or more than 68
Since the two events are mutually exclusive, the probability is the sum of the probabilities of each event:
[tex]\[ P(X < 54 \text{ or } X > 68) \approx 7.7935368191928 \times 10^{-45} + (1 - 0.5) = 0.5 \][/tex]
To summarize:
a) [tex]\( P(X < 68) = 0.5 \)[/tex]
b) [tex]\( P(X < 54) \approx 7.7935368191928 \times 10^{-45} \)[/tex]
c) [tex]\( P(68 < X < 82) = 0.5 \)[/tex]
d) [tex]\( P(X < 82) \approx 1.0 \)[/tex]
e) [tex]\( P(54 < X < 82) \approx 1.0 \)[/tex]
f) [tex]\( P(X < 54 \text{ or } X > 68) = 0.5 \)[/tex]
### Part a) [tex]\( P(X < 68) \)[/tex]
Since [tex]\( X \)[/tex] follows a normal distribution with a mean of 68, the cumulative probability of [tex]\( X \)[/tex] being less than the mean itself is 0.5.
[tex]\[ P(X < 68) = 0.5 \][/tex]
### Part b) The probability that [tex]\( X \)[/tex] is less than 54
Given the normal distribution parameters:
[tex]\[ P(X < 54) \approx 7.7935368191928 \times 10^{-45} \][/tex]
This value is extremely close to zero.
### Part c) [tex]\( P(68 < X < 82) \)[/tex]
To find this probability, we need the cumulative probability for both [tex]\( X = 82 \)[/tex] and [tex]\( X = 68 \)[/tex]. The desired probability is the difference between these cumulative probabilities.
[tex]\[ P(68 < X < 82) \approx 0.5 \][/tex]
### Part d) [tex]\( P(X < 82) \)[/tex]
For [tex]\( X = 82 \)[/tex]:
[tex]\[ P(X < 82) \approx 1.0 \][/tex]
This means that it is almost certain that [tex]\( X \)[/tex] is less than 82.
### Part e) The probability that [tex]\( X \)[/tex] is between 54 and 82
This is the difference in cumulative probabilities between [tex]\( X = 82 \)[/tex] and [tex]\( X = 54 \)[/tex]:
[tex]\[ P(54 < X < 82) \approx 1.0 \][/tex]
### Part f) The probability [tex]\( X \)[/tex] is less than 54 or more than 68
Since the two events are mutually exclusive, the probability is the sum of the probabilities of each event:
[tex]\[ P(X < 54 \text{ or } X > 68) \approx 7.7935368191928 \times 10^{-45} + (1 - 0.5) = 0.5 \][/tex]
To summarize:
a) [tex]\( P(X < 68) = 0.5 \)[/tex]
b) [tex]\( P(X < 54) \approx 7.7935368191928 \times 10^{-45} \)[/tex]
c) [tex]\( P(68 < X < 82) = 0.5 \)[/tex]
d) [tex]\( P(X < 82) \approx 1.0 \)[/tex]
e) [tex]\( P(54 < X < 82) \approx 1.0 \)[/tex]
f) [tex]\( P(X < 54 \text{ or } X > 68) = 0.5 \)[/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.