Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To evaluate the infinite geometric series described by the terms [tex]\(3 + 9 + 27 + 81 + \ldots\)[/tex], let's first identify the first term and the common ratio of the series.
1. Identify the first term:
The first term [tex]\(a\)[/tex] of the series is [tex]\(3\)[/tex].
2. Determine the common ratio:
The common ratio [tex]\(r\)[/tex] can be found by dividing any term by the previous term.
- For example, the second term [tex]\(9\)[/tex] divided by the first term [tex]\(3\)[/tex] gives [tex]\(r = \frac{9}{3} = 3\)[/tex].
- You can check this ratio with other terms as well: [tex]\[ \frac{27}{9} = 3 \text{ and } \frac{81}{27} = 3. \][/tex]
Thus the common ratio [tex]\(r\)[/tex] is [tex]\(3\)[/tex].
3. Determine if the series converges or diverges:
For an infinite geometric series to have a sum, the absolute value of the common ratio [tex]\(r\)[/tex] must be less than [tex]\(1\)[/tex] ([tex]\(|r| < 1\)[/tex]). If [tex]\(|r| \geq 1\)[/tex], the series diverges and does not have a finite sum.
4. Check the common ratio:
Since [tex]\(r = 3\)[/tex], we have [tex]\(|3| = 3\)[/tex], which is greater than [tex]\(1\)[/tex].
Therefore, the infinite geometric series [tex]\(3 + 9 + 27 + 81 + \ldots\)[/tex] does not converge; it diverges.
The correct answer is:
No sum, divergent.
1. Identify the first term:
The first term [tex]\(a\)[/tex] of the series is [tex]\(3\)[/tex].
2. Determine the common ratio:
The common ratio [tex]\(r\)[/tex] can be found by dividing any term by the previous term.
- For example, the second term [tex]\(9\)[/tex] divided by the first term [tex]\(3\)[/tex] gives [tex]\(r = \frac{9}{3} = 3\)[/tex].
- You can check this ratio with other terms as well: [tex]\[ \frac{27}{9} = 3 \text{ and } \frac{81}{27} = 3. \][/tex]
Thus the common ratio [tex]\(r\)[/tex] is [tex]\(3\)[/tex].
3. Determine if the series converges or diverges:
For an infinite geometric series to have a sum, the absolute value of the common ratio [tex]\(r\)[/tex] must be less than [tex]\(1\)[/tex] ([tex]\(|r| < 1\)[/tex]). If [tex]\(|r| \geq 1\)[/tex], the series diverges and does not have a finite sum.
4. Check the common ratio:
Since [tex]\(r = 3\)[/tex], we have [tex]\(|3| = 3\)[/tex], which is greater than [tex]\(1\)[/tex].
Therefore, the infinite geometric series [tex]\(3 + 9 + 27 + 81 + \ldots\)[/tex] does not converge; it diverges.
The correct answer is:
No sum, divergent.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.