Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To evaluate the geometric series described by the terms [tex]\(-4, -16, -64, -256, \ldots\)[/tex] with [tex]\(n=6\)[/tex], let's break down the steps for calculating the sum of the series:
1. Identify the terms of the geometric series:
- The first term ([tex]\(a\)[/tex]) is [tex]\(-4\)[/tex].
- The common ratio ([tex]\(r\)[/tex]) can be found by dividing the second term by the first term:
[tex]\[ r = \frac{-16}{-4} = 4 \][/tex]
2. Set up the formula for the sum of a geometric series:
The sum [tex]\(S_n\)[/tex] of the first [tex]\(n\)[/tex] terms of a geometric series is given by:
[tex]\[ S_n = a \frac{1-r^n}{1-r}, \text{ where } r \neq 1 \][/tex]
In this case, [tex]\(a = -4\)[/tex], [tex]\(r = 4\)[/tex], and [tex]\(n = 6\)[/tex].
3. Substitute the values into the formula and compute:
[tex]\[ S_6 = -4 \frac{1-4^6}{1-4} \][/tex]
Calculate [tex]\(4^6\)[/tex]:
[tex]\[ 4^6 = 4096 \][/tex]
Then substitute this into the formula:
[tex]\[ S_6 = -4 \frac{1-4096}{1-4} \][/tex]
Simplify the fraction:
[tex]\[ 1-4096 = -4095 \][/tex]
[tex]\[ 1-4 = -3 \][/tex]
So,
[tex]\[ S_6 = -4 \frac{-4095}{-3} = -4 \times 1365 \][/tex]
Finally, calculate the product:
[tex]\[ S_6 = -5460 \][/tex]
Therefore, the sum of the geometric series [tex]\(-4, -16, -64, -256, \ldots\)[/tex] with [tex]\(n=6\)[/tex] is [tex]\(-5460\)[/tex].
The correct answer is:
[tex]\[ -5460 \][/tex]
1. Identify the terms of the geometric series:
- The first term ([tex]\(a\)[/tex]) is [tex]\(-4\)[/tex].
- The common ratio ([tex]\(r\)[/tex]) can be found by dividing the second term by the first term:
[tex]\[ r = \frac{-16}{-4} = 4 \][/tex]
2. Set up the formula for the sum of a geometric series:
The sum [tex]\(S_n\)[/tex] of the first [tex]\(n\)[/tex] terms of a geometric series is given by:
[tex]\[ S_n = a \frac{1-r^n}{1-r}, \text{ where } r \neq 1 \][/tex]
In this case, [tex]\(a = -4\)[/tex], [tex]\(r = 4\)[/tex], and [tex]\(n = 6\)[/tex].
3. Substitute the values into the formula and compute:
[tex]\[ S_6 = -4 \frac{1-4^6}{1-4} \][/tex]
Calculate [tex]\(4^6\)[/tex]:
[tex]\[ 4^6 = 4096 \][/tex]
Then substitute this into the formula:
[tex]\[ S_6 = -4 \frac{1-4096}{1-4} \][/tex]
Simplify the fraction:
[tex]\[ 1-4096 = -4095 \][/tex]
[tex]\[ 1-4 = -3 \][/tex]
So,
[tex]\[ S_6 = -4 \frac{-4095}{-3} = -4 \times 1365 \][/tex]
Finally, calculate the product:
[tex]\[ S_6 = -5460 \][/tex]
Therefore, the sum of the geometric series [tex]\(-4, -16, -64, -256, \ldots\)[/tex] with [tex]\(n=6\)[/tex] is [tex]\(-5460\)[/tex].
The correct answer is:
[tex]\[ -5460 \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.