At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To identify the factors of the expression [tex]\(6ab - 8a + 21b - 28\)[/tex], let's go through the factorization step by step.
First, take a look at the given expression:
[tex]\[6ab - 8a + 21b - 28\][/tex]
### Step 1: Group the terms to find common factors
We can group the terms in pairs to factor by grouping:
Group 1: [tex]\(6ab - 8a\)[/tex]
Group 2: [tex]\(21b - 28\)[/tex]
### Step 2: Factor out the greatest common factor (GCF) from each group
From the first group, [tex]\(6ab - 8a\)[/tex]:
- The GCF of [tex]\(6ab\)[/tex] and [tex]\(-8a\)[/tex] is [tex]\(2a\)[/tex].
- Factor [tex]\(2a\)[/tex] out:
[tex]\[6ab - 8a = 2a(3b - 4)\][/tex]
From the second group, [tex]\(21b - 28\)[/tex]:
- The GCF of [tex]\(21b\)[/tex] and [tex]\(-28\)[/tex] is [tex]\(7\)[/tex].
- Factor [tex]\(7\)[/tex] out:
[tex]\[21b - 28 = 7(3b - 4)\][/tex]
### Step 3: Combine the factored expressions
Now we have:
[tex]\[6ab - 8a + 21b - 28 = 2a(3b - 4) + 7(3b - 4)\][/tex]
Notice that both groups contain a common factor [tex]\((3b - 4)\)[/tex]. We can factor this out:
[tex]\[(2a + 7)(3b - 4)\][/tex]
Thus, the factors of [tex]\(6ab - 8a + 21b - 28\)[/tex] are:
[tex]\[\boxed{(2a + 7)(3b - 4)}\][/tex]
So, the correct answer is [tex]\((2a + 7)(3b - 4)\)[/tex].
First, take a look at the given expression:
[tex]\[6ab - 8a + 21b - 28\][/tex]
### Step 1: Group the terms to find common factors
We can group the terms in pairs to factor by grouping:
Group 1: [tex]\(6ab - 8a\)[/tex]
Group 2: [tex]\(21b - 28\)[/tex]
### Step 2: Factor out the greatest common factor (GCF) from each group
From the first group, [tex]\(6ab - 8a\)[/tex]:
- The GCF of [tex]\(6ab\)[/tex] and [tex]\(-8a\)[/tex] is [tex]\(2a\)[/tex].
- Factor [tex]\(2a\)[/tex] out:
[tex]\[6ab - 8a = 2a(3b - 4)\][/tex]
From the second group, [tex]\(21b - 28\)[/tex]:
- The GCF of [tex]\(21b\)[/tex] and [tex]\(-28\)[/tex] is [tex]\(7\)[/tex].
- Factor [tex]\(7\)[/tex] out:
[tex]\[21b - 28 = 7(3b - 4)\][/tex]
### Step 3: Combine the factored expressions
Now we have:
[tex]\[6ab - 8a + 21b - 28 = 2a(3b - 4) + 7(3b - 4)\][/tex]
Notice that both groups contain a common factor [tex]\((3b - 4)\)[/tex]. We can factor this out:
[tex]\[(2a + 7)(3b - 4)\][/tex]
Thus, the factors of [tex]\(6ab - 8a + 21b - 28\)[/tex] are:
[tex]\[\boxed{(2a + 7)(3b - 4)}\][/tex]
So, the correct answer is [tex]\((2a + 7)(3b - 4)\)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.