Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the perimeter of an isosceles right triangle where the length of each leg is 3 feet, follow these steps:
1. Identify the triangle type and leg lengths:
An isosceles right triangle means it has two equal legs and a right angle between them. Here, each leg is given as 3 ft.
2. Apply the Pythagorean Theorem:
To find the length of the hypotenuse (the side opposite the right angle), use the Pythagorean theorem, which states:
[tex]\[ a^2 + b^2 = c^2 \][/tex]
For our triangle, both legs are 3 ft:
[tex]\[ 3^2 + 3^2 = c^2 \][/tex]
Simplifying this:
[tex]\[ 9 + 9 = c^2 \][/tex]
[tex]\[ 18 = c^2 \][/tex]
3. Solve for the hypotenuse:
Take the square root of both sides to find the hypotenuse:
[tex]\[ c = \sqrt{18} = \sqrt{9 \times 2} = \sqrt{9} \times \sqrt{2} = 3\sqrt{2} \][/tex]
Thus, the hypotenuse is [tex]\( 3\sqrt{2} \)[/tex] ft.
4. Calculate the perimeter of the triangle:
The perimeter is the sum of all three sides of the triangle:
[tex]\[ \text{Perimeter} = \text{Leg}_1 + \text{Leg}_2 + \text{Hypotenuse} \][/tex]
Substituting the known lengths:
[tex]\[ \text{Perimeter} = 3 + 3 + 3\sqrt{2} = 6 + 3\sqrt{2} \text{ ft} \][/tex]
So, the perimeter of the given isosceles right triangle is [tex]\( 6 + 3\sqrt{2} \)[/tex] ft.
The correct answer is:
[tex]\[ \boxed{6 + 3\sqrt{2} \text{ ft}} \][/tex]
1. Identify the triangle type and leg lengths:
An isosceles right triangle means it has two equal legs and a right angle between them. Here, each leg is given as 3 ft.
2. Apply the Pythagorean Theorem:
To find the length of the hypotenuse (the side opposite the right angle), use the Pythagorean theorem, which states:
[tex]\[ a^2 + b^2 = c^2 \][/tex]
For our triangle, both legs are 3 ft:
[tex]\[ 3^2 + 3^2 = c^2 \][/tex]
Simplifying this:
[tex]\[ 9 + 9 = c^2 \][/tex]
[tex]\[ 18 = c^2 \][/tex]
3. Solve for the hypotenuse:
Take the square root of both sides to find the hypotenuse:
[tex]\[ c = \sqrt{18} = \sqrt{9 \times 2} = \sqrt{9} \times \sqrt{2} = 3\sqrt{2} \][/tex]
Thus, the hypotenuse is [tex]\( 3\sqrt{2} \)[/tex] ft.
4. Calculate the perimeter of the triangle:
The perimeter is the sum of all three sides of the triangle:
[tex]\[ \text{Perimeter} = \text{Leg}_1 + \text{Leg}_2 + \text{Hypotenuse} \][/tex]
Substituting the known lengths:
[tex]\[ \text{Perimeter} = 3 + 3 + 3\sqrt{2} = 6 + 3\sqrt{2} \text{ ft} \][/tex]
So, the perimeter of the given isosceles right triangle is [tex]\( 6 + 3\sqrt{2} \)[/tex] ft.
The correct answer is:
[tex]\[ \boxed{6 + 3\sqrt{2} \text{ ft}} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.