Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the half-life of a substance, we need to determine the time it takes for half of the initial mass to decay. Let's follow the detailed, step-by-step process to find the half-life, [tex]\( T_{1/2} \)[/tex], given the information provided.
### Step-by-Step Solution:
1. Understand the Decay Formula:
The given decay formula is:
[tex]\[ N = N_0 e^{-k t} \][/tex]
where
- [tex]\( N_0 \)[/tex] is the initial mass,
- [tex]\( N \)[/tex] is the mass at time [tex]\( t \)[/tex],
- [tex]\( k \)[/tex] is the decay constant,
- [tex]\( t \)[/tex] is the time.
2. Define Half-Life:
The half-life ([tex]\( T_{1/2} \)[/tex]) is the time required for the substance to decay to half of its initial mass, i.e., when [tex]\( N = \frac{N_0}{2} \)[/tex].
3. Set up the Half-Life Equation:
Substitute [tex]\( N = \frac{N_0}{2} \)[/tex] into the decay formula:
[tex]\[ \frac{N_0}{2} = N_0 e^{-k t_{1/2}} \][/tex]
Divide both sides by [tex]\( N_0 \)[/tex] to isolate the exponential term:
[tex]\[ \frac{1}{2} = e^{-k t_{1/2}} \][/tex]
4. Take the Natural Logarithm on Both Sides:
Apply the natural logarithm (ln) to both sides to solve for [tex]\( t_{1/2} \)[/tex]:
[tex]\[ \ln\left(\frac{1}{2}\right) = \ln\left(e^{-k t_{1/2}}\right) \][/tex]
Using the property of logarithms [tex]\( \ln(e^x) = x \)[/tex]:
[tex]\[ \ln\left(\frac{1}{2}\right) = -k t_{1/2} \][/tex]
5. Solve for [tex]\( t_{1/2} \)[/tex]:
Rearrange the equation to solve for [tex]\( t_{1/2} \)[/tex]:
[tex]\[ t_{1/2} = \frac{\ln\left(\frac{1}{2}\right)}{-k} \][/tex]
Using the fact that [tex]\( \ln\left(\frac{1}{2}\right) = -\ln(2) \)[/tex]:
[tex]\[ t_{1/2} = \frac{-\ln(2)}{-k} \][/tex]
Simplifying further:
[tex]\[ t_{1/2} = \frac{\ln(2)}{k} \][/tex]
6. Substitute the Given Decay Constant:
Given [tex]\( k = 0.1024 \)[/tex], substitute this value into the equation:
[tex]\[ t_{1/2} = \frac{\ln(2)}{0.1024} \][/tex]
We know that [tex]\( \ln(2) \approx 0.693 \)[/tex]:
[tex]\[ t_{1/2} = \frac{0.693}{0.1024} \approx 6.7690154351557155 \][/tex]
7. Round to the Nearest Tenth:
Finally, round the result to the nearest tenth:
[tex]\[ t_{1/2} \approx 6.8 \][/tex]
### Conclusion:
The half-life of the substance is approximately [tex]\( 6.8 \)[/tex] days.
### Step-by-Step Solution:
1. Understand the Decay Formula:
The given decay formula is:
[tex]\[ N = N_0 e^{-k t} \][/tex]
where
- [tex]\( N_0 \)[/tex] is the initial mass,
- [tex]\( N \)[/tex] is the mass at time [tex]\( t \)[/tex],
- [tex]\( k \)[/tex] is the decay constant,
- [tex]\( t \)[/tex] is the time.
2. Define Half-Life:
The half-life ([tex]\( T_{1/2} \)[/tex]) is the time required for the substance to decay to half of its initial mass, i.e., when [tex]\( N = \frac{N_0}{2} \)[/tex].
3. Set up the Half-Life Equation:
Substitute [tex]\( N = \frac{N_0}{2} \)[/tex] into the decay formula:
[tex]\[ \frac{N_0}{2} = N_0 e^{-k t_{1/2}} \][/tex]
Divide both sides by [tex]\( N_0 \)[/tex] to isolate the exponential term:
[tex]\[ \frac{1}{2} = e^{-k t_{1/2}} \][/tex]
4. Take the Natural Logarithm on Both Sides:
Apply the natural logarithm (ln) to both sides to solve for [tex]\( t_{1/2} \)[/tex]:
[tex]\[ \ln\left(\frac{1}{2}\right) = \ln\left(e^{-k t_{1/2}}\right) \][/tex]
Using the property of logarithms [tex]\( \ln(e^x) = x \)[/tex]:
[tex]\[ \ln\left(\frac{1}{2}\right) = -k t_{1/2} \][/tex]
5. Solve for [tex]\( t_{1/2} \)[/tex]:
Rearrange the equation to solve for [tex]\( t_{1/2} \)[/tex]:
[tex]\[ t_{1/2} = \frac{\ln\left(\frac{1}{2}\right)}{-k} \][/tex]
Using the fact that [tex]\( \ln\left(\frac{1}{2}\right) = -\ln(2) \)[/tex]:
[tex]\[ t_{1/2} = \frac{-\ln(2)}{-k} \][/tex]
Simplifying further:
[tex]\[ t_{1/2} = \frac{\ln(2)}{k} \][/tex]
6. Substitute the Given Decay Constant:
Given [tex]\( k = 0.1024 \)[/tex], substitute this value into the equation:
[tex]\[ t_{1/2} = \frac{\ln(2)}{0.1024} \][/tex]
We know that [tex]\( \ln(2) \approx 0.693 \)[/tex]:
[tex]\[ t_{1/2} = \frac{0.693}{0.1024} \approx 6.7690154351557155 \][/tex]
7. Round to the Nearest Tenth:
Finally, round the result to the nearest tenth:
[tex]\[ t_{1/2} \approx 6.8 \][/tex]
### Conclusion:
The half-life of the substance is approximately [tex]\( 6.8 \)[/tex] days.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.