Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the half-life of a substance, we need to determine the time it takes for half of the initial mass to decay. Let's follow the detailed, step-by-step process to find the half-life, [tex]\( T_{1/2} \)[/tex], given the information provided.
### Step-by-Step Solution:
1. Understand the Decay Formula:
The given decay formula is:
[tex]\[ N = N_0 e^{-k t} \][/tex]
where
- [tex]\( N_0 \)[/tex] is the initial mass,
- [tex]\( N \)[/tex] is the mass at time [tex]\( t \)[/tex],
- [tex]\( k \)[/tex] is the decay constant,
- [tex]\( t \)[/tex] is the time.
2. Define Half-Life:
The half-life ([tex]\( T_{1/2} \)[/tex]) is the time required for the substance to decay to half of its initial mass, i.e., when [tex]\( N = \frac{N_0}{2} \)[/tex].
3. Set up the Half-Life Equation:
Substitute [tex]\( N = \frac{N_0}{2} \)[/tex] into the decay formula:
[tex]\[ \frac{N_0}{2} = N_0 e^{-k t_{1/2}} \][/tex]
Divide both sides by [tex]\( N_0 \)[/tex] to isolate the exponential term:
[tex]\[ \frac{1}{2} = e^{-k t_{1/2}} \][/tex]
4. Take the Natural Logarithm on Both Sides:
Apply the natural logarithm (ln) to both sides to solve for [tex]\( t_{1/2} \)[/tex]:
[tex]\[ \ln\left(\frac{1}{2}\right) = \ln\left(e^{-k t_{1/2}}\right) \][/tex]
Using the property of logarithms [tex]\( \ln(e^x) = x \)[/tex]:
[tex]\[ \ln\left(\frac{1}{2}\right) = -k t_{1/2} \][/tex]
5. Solve for [tex]\( t_{1/2} \)[/tex]:
Rearrange the equation to solve for [tex]\( t_{1/2} \)[/tex]:
[tex]\[ t_{1/2} = \frac{\ln\left(\frac{1}{2}\right)}{-k} \][/tex]
Using the fact that [tex]\( \ln\left(\frac{1}{2}\right) = -\ln(2) \)[/tex]:
[tex]\[ t_{1/2} = \frac{-\ln(2)}{-k} \][/tex]
Simplifying further:
[tex]\[ t_{1/2} = \frac{\ln(2)}{k} \][/tex]
6. Substitute the Given Decay Constant:
Given [tex]\( k = 0.1024 \)[/tex], substitute this value into the equation:
[tex]\[ t_{1/2} = \frac{\ln(2)}{0.1024} \][/tex]
We know that [tex]\( \ln(2) \approx 0.693 \)[/tex]:
[tex]\[ t_{1/2} = \frac{0.693}{0.1024} \approx 6.7690154351557155 \][/tex]
7. Round to the Nearest Tenth:
Finally, round the result to the nearest tenth:
[tex]\[ t_{1/2} \approx 6.8 \][/tex]
### Conclusion:
The half-life of the substance is approximately [tex]\( 6.8 \)[/tex] days.
### Step-by-Step Solution:
1. Understand the Decay Formula:
The given decay formula is:
[tex]\[ N = N_0 e^{-k t} \][/tex]
where
- [tex]\( N_0 \)[/tex] is the initial mass,
- [tex]\( N \)[/tex] is the mass at time [tex]\( t \)[/tex],
- [tex]\( k \)[/tex] is the decay constant,
- [tex]\( t \)[/tex] is the time.
2. Define Half-Life:
The half-life ([tex]\( T_{1/2} \)[/tex]) is the time required for the substance to decay to half of its initial mass, i.e., when [tex]\( N = \frac{N_0}{2} \)[/tex].
3. Set up the Half-Life Equation:
Substitute [tex]\( N = \frac{N_0}{2} \)[/tex] into the decay formula:
[tex]\[ \frac{N_0}{2} = N_0 e^{-k t_{1/2}} \][/tex]
Divide both sides by [tex]\( N_0 \)[/tex] to isolate the exponential term:
[tex]\[ \frac{1}{2} = e^{-k t_{1/2}} \][/tex]
4. Take the Natural Logarithm on Both Sides:
Apply the natural logarithm (ln) to both sides to solve for [tex]\( t_{1/2} \)[/tex]:
[tex]\[ \ln\left(\frac{1}{2}\right) = \ln\left(e^{-k t_{1/2}}\right) \][/tex]
Using the property of logarithms [tex]\( \ln(e^x) = x \)[/tex]:
[tex]\[ \ln\left(\frac{1}{2}\right) = -k t_{1/2} \][/tex]
5. Solve for [tex]\( t_{1/2} \)[/tex]:
Rearrange the equation to solve for [tex]\( t_{1/2} \)[/tex]:
[tex]\[ t_{1/2} = \frac{\ln\left(\frac{1}{2}\right)}{-k} \][/tex]
Using the fact that [tex]\( \ln\left(\frac{1}{2}\right) = -\ln(2) \)[/tex]:
[tex]\[ t_{1/2} = \frac{-\ln(2)}{-k} \][/tex]
Simplifying further:
[tex]\[ t_{1/2} = \frac{\ln(2)}{k} \][/tex]
6. Substitute the Given Decay Constant:
Given [tex]\( k = 0.1024 \)[/tex], substitute this value into the equation:
[tex]\[ t_{1/2} = \frac{\ln(2)}{0.1024} \][/tex]
We know that [tex]\( \ln(2) \approx 0.693 \)[/tex]:
[tex]\[ t_{1/2} = \frac{0.693}{0.1024} \approx 6.7690154351557155 \][/tex]
7. Round to the Nearest Tenth:
Finally, round the result to the nearest tenth:
[tex]\[ t_{1/2} \approx 6.8 \][/tex]
### Conclusion:
The half-life of the substance is approximately [tex]\( 6.8 \)[/tex] days.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.