At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's consider the function [tex]\( y = 3 \cot \left( \frac{1}{2} x \right) - 4 \)[/tex]. We need to determine where this function has vertical asymptotes. A vertical asymptote occurs where the argument of the cotangent function is undefined.
The cotangent function, [tex]\( \cot(\theta) \)[/tex], is undefined where [tex]\( \theta = n\pi \)[/tex], where [tex]\( n \)[/tex] is any integer.
We are dealing with [tex]\( \cot \left( \frac{1}{2} x \right) \)[/tex]. Therefore, we need to find [tex]\( x \)[/tex] such that:
[tex]\[ \frac{1}{2} x = n\pi \][/tex]
Solving for [tex]\( x \)[/tex] gives:
[tex]\[ x = 2n\pi \][/tex]
This tells us that the function will have vertical asymptotes at [tex]\( x = 2n\pi \)[/tex] for [tex]\( n \)[/tex] being any integer.
Let's check each given option:
A. [tex]\( x = \pm 2\pi \)[/tex]:
- For [tex]\( n = 1 \)[/tex], [tex]\( x = 2(1)\pi = 2\pi \)[/tex]
- For [tex]\( n = -1 \)[/tex], [tex]\( x = 2(-1)\pi = -2\pi \)[/tex]
Thus, both [tex]\( x = 2\pi \)[/tex] and [tex]\( x = -2\pi \)[/tex] fit the form [tex]\( x = 2n\pi \)[/tex]. Hence, [tex]\( x = \pm 2\pi \)[/tex] are vertical asymptotes. This option is correct.
B. [tex]\( x = \frac{\pi}{2} \)[/tex]:
- If we set [tex]\( \frac{1}{2} x = \frac{\pi}{2} \)[/tex], solving for [tex]\( x \)[/tex] would give [tex]\( x = \pi \)[/tex], which does not fit the form [tex]\( 2n\pi \)[/tex].
Thus, this option is incorrect.
C. [tex]\( x = 3\pi \)[/tex]:
- If we set [tex]\( x = 3\pi \)[/tex], dividing both sides by [tex]\( 2 \)[/tex] gives [tex]\( \frac{1}{2} x = \frac{3\pi}{2} \)[/tex], which is not an integer multiple of [tex]\( \pi \)[/tex].
Thus, [tex]\( x = 3\pi \)[/tex] does not fit the form [tex]\( 2n\pi \)[/tex] and this option is incorrect.
D. [tex]\( x = 0 \)[/tex]:
- For [tex]\( n = 0 \)[/tex], [tex]\( x = 2(0)\pi = 0 \)[/tex].
Thus, [tex]\( x = 0 \)[/tex] fits the form [tex]\( 2n\pi \)[/tex]. Hence, this option is correct.
Combining the valid choices, the correct answers are:
A. [tex]\( x = \pm 2\pi \)[/tex]
D. [tex]\( x = 0 \)[/tex]
So, the vertical asymptotes of the function are given by the options A and D.
The cotangent function, [tex]\( \cot(\theta) \)[/tex], is undefined where [tex]\( \theta = n\pi \)[/tex], where [tex]\( n \)[/tex] is any integer.
We are dealing with [tex]\( \cot \left( \frac{1}{2} x \right) \)[/tex]. Therefore, we need to find [tex]\( x \)[/tex] such that:
[tex]\[ \frac{1}{2} x = n\pi \][/tex]
Solving for [tex]\( x \)[/tex] gives:
[tex]\[ x = 2n\pi \][/tex]
This tells us that the function will have vertical asymptotes at [tex]\( x = 2n\pi \)[/tex] for [tex]\( n \)[/tex] being any integer.
Let's check each given option:
A. [tex]\( x = \pm 2\pi \)[/tex]:
- For [tex]\( n = 1 \)[/tex], [tex]\( x = 2(1)\pi = 2\pi \)[/tex]
- For [tex]\( n = -1 \)[/tex], [tex]\( x = 2(-1)\pi = -2\pi \)[/tex]
Thus, both [tex]\( x = 2\pi \)[/tex] and [tex]\( x = -2\pi \)[/tex] fit the form [tex]\( x = 2n\pi \)[/tex]. Hence, [tex]\( x = \pm 2\pi \)[/tex] are vertical asymptotes. This option is correct.
B. [tex]\( x = \frac{\pi}{2} \)[/tex]:
- If we set [tex]\( \frac{1}{2} x = \frac{\pi}{2} \)[/tex], solving for [tex]\( x \)[/tex] would give [tex]\( x = \pi \)[/tex], which does not fit the form [tex]\( 2n\pi \)[/tex].
Thus, this option is incorrect.
C. [tex]\( x = 3\pi \)[/tex]:
- If we set [tex]\( x = 3\pi \)[/tex], dividing both sides by [tex]\( 2 \)[/tex] gives [tex]\( \frac{1}{2} x = \frac{3\pi}{2} \)[/tex], which is not an integer multiple of [tex]\( \pi \)[/tex].
Thus, [tex]\( x = 3\pi \)[/tex] does not fit the form [tex]\( 2n\pi \)[/tex] and this option is incorrect.
D. [tex]\( x = 0 \)[/tex]:
- For [tex]\( n = 0 \)[/tex], [tex]\( x = 2(0)\pi = 0 \)[/tex].
Thus, [tex]\( x = 0 \)[/tex] fits the form [tex]\( 2n\pi \)[/tex]. Hence, this option is correct.
Combining the valid choices, the correct answers are:
A. [tex]\( x = \pm 2\pi \)[/tex]
D. [tex]\( x = 0 \)[/tex]
So, the vertical asymptotes of the function are given by the options A and D.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.