Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To fill in the missing reason in the given proof of the quadratic formula and arrive at the given numerical result, let's go through the steps in detail:
1. Given:
[tex]\[ ax^2 + bx + c = 0 \][/tex]
2. Subtract [tex]\( c \)[/tex] from both sides of the equation:
[tex]\[ ax^2 + bx = -c \][/tex]
3. Divide both sides of the equation by [tex]\( a \)[/tex]:
[tex]\[ x^2 + \frac{b}{a}x = -\frac{c}{a} \][/tex]
4. Complete the square and add [tex]\(\left(\frac{b}{2a}\right)^2\)[/tex] to both sides:
[tex]\[ x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2 = -\frac{c}{a} + \left(\frac{b}{2a}\right)^2 \][/tex]
5. Square [tex]\(\left(\frac{b}{2a}\right)\)[/tex] on the right side of the equation:
[tex]\[ x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2 = -\frac{c}{a} + \frac{b^2}{4a^2} \][/tex]
6. Find a common denominator on the right side of the equation:
[tex]\[ x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2 = -\frac{4ac}{4a^2} + \frac{b^2}{4a^2} \][/tex]
7. Add the fractions together on the right side of the equation:
[tex]\[ x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2} \][/tex]
Therefore, the missing reason is:
[tex]\[ \text{Add the fractions together on the right side of the equation} \][/tex]
1. Given:
[tex]\[ ax^2 + bx + c = 0 \][/tex]
2. Subtract [tex]\( c \)[/tex] from both sides of the equation:
[tex]\[ ax^2 + bx = -c \][/tex]
3. Divide both sides of the equation by [tex]\( a \)[/tex]:
[tex]\[ x^2 + \frac{b}{a}x = -\frac{c}{a} \][/tex]
4. Complete the square and add [tex]\(\left(\frac{b}{2a}\right)^2\)[/tex] to both sides:
[tex]\[ x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2 = -\frac{c}{a} + \left(\frac{b}{2a}\right)^2 \][/tex]
5. Square [tex]\(\left(\frac{b}{2a}\right)\)[/tex] on the right side of the equation:
[tex]\[ x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2 = -\frac{c}{a} + \frac{b^2}{4a^2} \][/tex]
6. Find a common denominator on the right side of the equation:
[tex]\[ x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2 = -\frac{4ac}{4a^2} + \frac{b^2}{4a^2} \][/tex]
7. Add the fractions together on the right side of the equation:
[tex]\[ x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2} \][/tex]
Therefore, the missing reason is:
[tex]\[ \text{Add the fractions together on the right side of the equation} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.