Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To fill in the missing reason in the given proof of the quadratic formula and arrive at the given numerical result, let's go through the steps in detail:
1. Given:
[tex]\[ ax^2 + bx + c = 0 \][/tex]
2. Subtract [tex]\( c \)[/tex] from both sides of the equation:
[tex]\[ ax^2 + bx = -c \][/tex]
3. Divide both sides of the equation by [tex]\( a \)[/tex]:
[tex]\[ x^2 + \frac{b}{a}x = -\frac{c}{a} \][/tex]
4. Complete the square and add [tex]\(\left(\frac{b}{2a}\right)^2\)[/tex] to both sides:
[tex]\[ x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2 = -\frac{c}{a} + \left(\frac{b}{2a}\right)^2 \][/tex]
5. Square [tex]\(\left(\frac{b}{2a}\right)\)[/tex] on the right side of the equation:
[tex]\[ x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2 = -\frac{c}{a} + \frac{b^2}{4a^2} \][/tex]
6. Find a common denominator on the right side of the equation:
[tex]\[ x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2 = -\frac{4ac}{4a^2} + \frac{b^2}{4a^2} \][/tex]
7. Add the fractions together on the right side of the equation:
[tex]\[ x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2} \][/tex]
Therefore, the missing reason is:
[tex]\[ \text{Add the fractions together on the right side of the equation} \][/tex]
1. Given:
[tex]\[ ax^2 + bx + c = 0 \][/tex]
2. Subtract [tex]\( c \)[/tex] from both sides of the equation:
[tex]\[ ax^2 + bx = -c \][/tex]
3. Divide both sides of the equation by [tex]\( a \)[/tex]:
[tex]\[ x^2 + \frac{b}{a}x = -\frac{c}{a} \][/tex]
4. Complete the square and add [tex]\(\left(\frac{b}{2a}\right)^2\)[/tex] to both sides:
[tex]\[ x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2 = -\frac{c}{a} + \left(\frac{b}{2a}\right)^2 \][/tex]
5. Square [tex]\(\left(\frac{b}{2a}\right)\)[/tex] on the right side of the equation:
[tex]\[ x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2 = -\frac{c}{a} + \frac{b^2}{4a^2} \][/tex]
6. Find a common denominator on the right side of the equation:
[tex]\[ x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2 = -\frac{4ac}{4a^2} + \frac{b^2}{4a^2} \][/tex]
7. Add the fractions together on the right side of the equation:
[tex]\[ x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2} \][/tex]
Therefore, the missing reason is:
[tex]\[ \text{Add the fractions together on the right side of the equation} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.