Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which vectors are orthogonal to the plane described by the equation [tex]\(2(x-1) - (y+1) + z = 0\)[/tex], we first need to identify the normal vector to the plane. The normal vector to a plane given by the general equation [tex]\(Ax + By + Cz = D\)[/tex] is [tex]\(\langle A, B, C \rangle\)[/tex].
From the given equation [tex]\(2(x-1) - (y+1) + z = 0\)[/tex], we can rewrite it in the standard form:
[tex]\[2x - y + z - 3 = 0.\][/tex]
Here, [tex]\(A = 2\)[/tex], [tex]\(B = -1\)[/tex], and [tex]\(C = 1\)[/tex]. Therefore, the normal vector to the plane is [tex]\(\langle 2, -1, 1 \rangle\)[/tex].
For a vector to be orthogonal to the plane, it has to be perpendicular to the normal vector. Two vectors are perpendicular if and only if their dot product is zero. Hence, for each vector [tex]\(\vec{v} = \langle v_1, v_2, v_3 \rangle\)[/tex], we need to check if:
[tex]\[ \vec{v} \cdot \langle 2, -1, 1 \rangle = 0. \][/tex]
Let's compute the dot product for each given vector:
1. For [tex]\( \vec{v} = \langle 1, -1, 0 \rangle \)[/tex]:
[tex]\[ \langle 1, -1, 0 \rangle \cdot \langle 2, -1, 1 \rangle = 1 \cdot 2 + (-1) \cdot (-1) + 0 \cdot 1 = 2 + 1 + 0 = 3. \][/tex]
This dot product is [tex]\(3\)[/tex], not [tex]\(0\)[/tex], so [tex]\(\vec{v} = \langle 1, -1, 0 \rangle\)[/tex] is not orthogonal to the plane.
2. For [tex]\(\vec{v} = \langle -2, 2, 0 \rangle \)[/tex]:
[tex]\[ \langle -2, 2, 0 \rangle \cdot \langle 2, -1, 1 \rangle = -2 \cdot 2 + 2 \cdot (-1) + 0 \cdot 1 = -4 - 2 + 0 = -6. \][/tex]
This dot product is [tex]\(-6\)[/tex], not [tex]\(0\)[/tex], so [tex]\(\vec{v} = \langle -2, 2, 0 \rangle\)[/tex] is not orthogonal to the plane.
3. For [tex]\(\vec{v} = \langle -2, 1, -1 \rangle \)[/tex]:
[tex]\[ \langle -2, 1, -1 \rangle \cdot \langle 2, -1, 1 \rangle = -2 \cdot 2 + 1 \cdot (-1) + (-1) \cdot 1 = -4 - 1 - 1 = -6. \][/tex]
This dot product is [tex]\(-6\)[/tex], not [tex]\(0\)[/tex], so [tex]\(\vec{v} = \langle -2, 1, -1 \rangle\)[/tex] is not orthogonal to the plane.
4. For [tex]\(\vec{v} = \langle 4, 2, -2 \rangle \)[/tex]:
[tex]\[ \langle 4, 2, -2 \rangle \cdot \langle 2, -1, 1 \rangle = 4 \cdot 2 + 2 \cdot (-1) + (-2) \cdot 1 = 8 - 2 - 2 = 4. \][/tex]
This dot product is [tex]\(4\)[/tex], not [tex]\(0\)[/tex], so [tex]\(\vec{v} = \langle 4, 2, -2 \rangle\)[/tex] is not orthogonal to the plane.
5. For [tex]\(\vec{v} = \langle -1, 2, -3 \rangle \)[/tex]:
[tex]\[ \langle -1, 2, -3 \rangle \cdot \langle 2, -1, 1 \rangle = -1 \cdot 2 + 2 \cdot (-1) + (-3) \cdot 1 = -2 - 2 - 3 = -7. \][/tex]
This dot product is [tex]\(-7\)[/tex], not [tex]\(0\)[/tex], so [tex]\(\vec{v} = \langle -1, 2, -3 \rangle\)[/tex] is not orthogonal to the plane.
6. For [tex]\(\vec{v} = \langle 2, -1, 1 \rangle \)[/tex]:
[tex]\[ \langle 2, -1, 1 \rangle \cdot \langle 2, -1, 1 \rangle = 2 \cdot 2 + (-1) \cdot (-1) + 1 \cdot 1 = 4 + 1 + 1 = 6. \][/tex]
This dot product is [tex]\(6\)[/tex], not [tex]\(0\)[/tex], so [tex]\(\vec{v} = \langle 2, -1, 1 \rangle\)[/tex] is not orthogonal to the plane.
From our calculations, we can see that _none_ of the given vectors are orthogonal to the plane described by the equation [tex]\(2(x-1) - (y+1) + z = 0\)[/tex].
From the given equation [tex]\(2(x-1) - (y+1) + z = 0\)[/tex], we can rewrite it in the standard form:
[tex]\[2x - y + z - 3 = 0.\][/tex]
Here, [tex]\(A = 2\)[/tex], [tex]\(B = -1\)[/tex], and [tex]\(C = 1\)[/tex]. Therefore, the normal vector to the plane is [tex]\(\langle 2, -1, 1 \rangle\)[/tex].
For a vector to be orthogonal to the plane, it has to be perpendicular to the normal vector. Two vectors are perpendicular if and only if their dot product is zero. Hence, for each vector [tex]\(\vec{v} = \langle v_1, v_2, v_3 \rangle\)[/tex], we need to check if:
[tex]\[ \vec{v} \cdot \langle 2, -1, 1 \rangle = 0. \][/tex]
Let's compute the dot product for each given vector:
1. For [tex]\( \vec{v} = \langle 1, -1, 0 \rangle \)[/tex]:
[tex]\[ \langle 1, -1, 0 \rangle \cdot \langle 2, -1, 1 \rangle = 1 \cdot 2 + (-1) \cdot (-1) + 0 \cdot 1 = 2 + 1 + 0 = 3. \][/tex]
This dot product is [tex]\(3\)[/tex], not [tex]\(0\)[/tex], so [tex]\(\vec{v} = \langle 1, -1, 0 \rangle\)[/tex] is not orthogonal to the plane.
2. For [tex]\(\vec{v} = \langle -2, 2, 0 \rangle \)[/tex]:
[tex]\[ \langle -2, 2, 0 \rangle \cdot \langle 2, -1, 1 \rangle = -2 \cdot 2 + 2 \cdot (-1) + 0 \cdot 1 = -4 - 2 + 0 = -6. \][/tex]
This dot product is [tex]\(-6\)[/tex], not [tex]\(0\)[/tex], so [tex]\(\vec{v} = \langle -2, 2, 0 \rangle\)[/tex] is not orthogonal to the plane.
3. For [tex]\(\vec{v} = \langle -2, 1, -1 \rangle \)[/tex]:
[tex]\[ \langle -2, 1, -1 \rangle \cdot \langle 2, -1, 1 \rangle = -2 \cdot 2 + 1 \cdot (-1) + (-1) \cdot 1 = -4 - 1 - 1 = -6. \][/tex]
This dot product is [tex]\(-6\)[/tex], not [tex]\(0\)[/tex], so [tex]\(\vec{v} = \langle -2, 1, -1 \rangle\)[/tex] is not orthogonal to the plane.
4. For [tex]\(\vec{v} = \langle 4, 2, -2 \rangle \)[/tex]:
[tex]\[ \langle 4, 2, -2 \rangle \cdot \langle 2, -1, 1 \rangle = 4 \cdot 2 + 2 \cdot (-1) + (-2) \cdot 1 = 8 - 2 - 2 = 4. \][/tex]
This dot product is [tex]\(4\)[/tex], not [tex]\(0\)[/tex], so [tex]\(\vec{v} = \langle 4, 2, -2 \rangle\)[/tex] is not orthogonal to the plane.
5. For [tex]\(\vec{v} = \langle -1, 2, -3 \rangle \)[/tex]:
[tex]\[ \langle -1, 2, -3 \rangle \cdot \langle 2, -1, 1 \rangle = -1 \cdot 2 + 2 \cdot (-1) + (-3) \cdot 1 = -2 - 2 - 3 = -7. \][/tex]
This dot product is [tex]\(-7\)[/tex], not [tex]\(0\)[/tex], so [tex]\(\vec{v} = \langle -1, 2, -3 \rangle\)[/tex] is not orthogonal to the plane.
6. For [tex]\(\vec{v} = \langle 2, -1, 1 \rangle \)[/tex]:
[tex]\[ \langle 2, -1, 1 \rangle \cdot \langle 2, -1, 1 \rangle = 2 \cdot 2 + (-1) \cdot (-1) + 1 \cdot 1 = 4 + 1 + 1 = 6. \][/tex]
This dot product is [tex]\(6\)[/tex], not [tex]\(0\)[/tex], so [tex]\(\vec{v} = \langle 2, -1, 1 \rangle\)[/tex] is not orthogonal to the plane.
From our calculations, we can see that _none_ of the given vectors are orthogonal to the plane described by the equation [tex]\(2(x-1) - (y+1) + z = 0\)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.