Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve for the value of [tex]\( r \)[/tex] in the expression [tex]\(\frac{11 \pm \sqrt{r}}{2}\)[/tex] from the quadratic equation [tex]\( x^2 - 11x + 5 \)[/tex], let's follow these steps:
1. Identify the coefficients [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] from the quadratic equation:
[tex]\[ a = 1, \quad b = -11, \quad c = 5 \][/tex]
2. Calculate the discriminant of the quadratic equation:
The discriminant formula for a quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] is given by:
[tex]\[ \text{Discriminant} = b^2 - 4ac \][/tex]
3. Substitute the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] into the discriminant formula:
[tex]\[ \text{Discriminant} = (-11)^2 - 4 \cdot 1 \cdot 5 \][/tex]
[tex]\[ \text{Discriminant} = 121 - 20 \][/tex]
[tex]\[ \text{Discriminant} = 101 \][/tex]
4. Interpret the discriminant in the context of the original question:
The question states that the solution is expressed as [tex]\(\frac{11 \pm \sqrt{r}}{2}\)[/tex]. This corresponds to the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex].
Since the discriminant [tex]\( b^2 - 4ac \)[/tex] is what is under the square root in the quadratic formula, we equate this to [tex]\( r \)[/tex]. Therefore:
[tex]\[ r = 101 \][/tex]
Therefore, the value of [tex]\( r \)[/tex] is [tex]\( \boxed{101} \)[/tex].
1. Identify the coefficients [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] from the quadratic equation:
[tex]\[ a = 1, \quad b = -11, \quad c = 5 \][/tex]
2. Calculate the discriminant of the quadratic equation:
The discriminant formula for a quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] is given by:
[tex]\[ \text{Discriminant} = b^2 - 4ac \][/tex]
3. Substitute the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] into the discriminant formula:
[tex]\[ \text{Discriminant} = (-11)^2 - 4 \cdot 1 \cdot 5 \][/tex]
[tex]\[ \text{Discriminant} = 121 - 20 \][/tex]
[tex]\[ \text{Discriminant} = 101 \][/tex]
4. Interpret the discriminant in the context of the original question:
The question states that the solution is expressed as [tex]\(\frac{11 \pm \sqrt{r}}{2}\)[/tex]. This corresponds to the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex].
Since the discriminant [tex]\( b^2 - 4ac \)[/tex] is what is under the square root in the quadratic formula, we equate this to [tex]\( r \)[/tex]. Therefore:
[tex]\[ r = 101 \][/tex]
Therefore, the value of [tex]\( r \)[/tex] is [tex]\( \boxed{101} \)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.