Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve for the value of [tex]\( r \)[/tex] in the expression [tex]\(\frac{11 \pm \sqrt{r}}{2}\)[/tex] from the quadratic equation [tex]\( x^2 - 11x + 5 \)[/tex], let's follow these steps:
1. Identify the coefficients [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] from the quadratic equation:
[tex]\[ a = 1, \quad b = -11, \quad c = 5 \][/tex]
2. Calculate the discriminant of the quadratic equation:
The discriminant formula for a quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] is given by:
[tex]\[ \text{Discriminant} = b^2 - 4ac \][/tex]
3. Substitute the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] into the discriminant formula:
[tex]\[ \text{Discriminant} = (-11)^2 - 4 \cdot 1 \cdot 5 \][/tex]
[tex]\[ \text{Discriminant} = 121 - 20 \][/tex]
[tex]\[ \text{Discriminant} = 101 \][/tex]
4. Interpret the discriminant in the context of the original question:
The question states that the solution is expressed as [tex]\(\frac{11 \pm \sqrt{r}}{2}\)[/tex]. This corresponds to the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex].
Since the discriminant [tex]\( b^2 - 4ac \)[/tex] is what is under the square root in the quadratic formula, we equate this to [tex]\( r \)[/tex]. Therefore:
[tex]\[ r = 101 \][/tex]
Therefore, the value of [tex]\( r \)[/tex] is [tex]\( \boxed{101} \)[/tex].
1. Identify the coefficients [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] from the quadratic equation:
[tex]\[ a = 1, \quad b = -11, \quad c = 5 \][/tex]
2. Calculate the discriminant of the quadratic equation:
The discriminant formula for a quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] is given by:
[tex]\[ \text{Discriminant} = b^2 - 4ac \][/tex]
3. Substitute the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] into the discriminant formula:
[tex]\[ \text{Discriminant} = (-11)^2 - 4 \cdot 1 \cdot 5 \][/tex]
[tex]\[ \text{Discriminant} = 121 - 20 \][/tex]
[tex]\[ \text{Discriminant} = 101 \][/tex]
4. Interpret the discriminant in the context of the original question:
The question states that the solution is expressed as [tex]\(\frac{11 \pm \sqrt{r}}{2}\)[/tex]. This corresponds to the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex].
Since the discriminant [tex]\( b^2 - 4ac \)[/tex] is what is under the square root in the quadratic formula, we equate this to [tex]\( r \)[/tex]. Therefore:
[tex]\[ r = 101 \][/tex]
Therefore, the value of [tex]\( r \)[/tex] is [tex]\( \boxed{101} \)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.