Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the solutions of the quadratic equation [tex]\(x^2 - 9x + 5 = 0\)[/tex], we will use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, the coefficients are:
[tex]\[ a = 1, \quad b = -9, \quad c = 5 \][/tex]
Step-by-Step Solution:
1. Calculate the discriminant:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
[tex]\[ \Delta = (-9)^2 - 4(1)(5) \][/tex]
[tex]\[ \Delta = 81 - 20 \][/tex]
[tex]\[ \Delta = 61 \][/tex]
2. Substitute the values into the quadratic formula:
[tex]\[ x = \frac{-(-9) \pm \sqrt{61}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{9 \pm \sqrt{61}}{2} \][/tex]
Thus, the solutions are:
[tex]\[ x_1 = \frac{9 + \sqrt{61}}{2} \][/tex]
[tex]\[ x_2 = \frac{9 - \sqrt{61}}{2} \][/tex]
3. Approximate the solutions numerically for clarity:
The approximate numerical values of the solutions are:
[tex]\[ x_1 \approx 8.405124837953327 \][/tex]
[tex]\[ x_2 \approx 0.594875162046673 \][/tex]
Therefore, the exact solutions of the quadratic equation [tex]\(x^2 - 9x + 5 = 0\)[/tex] are:
[tex]\[ x = \frac{9 + \sqrt{61}}{2} \][/tex]
and
[tex]\[ x = \frac{9 - \sqrt{61}}{2} \][/tex]
With the discriminant being 61, which confirms the solutions are real and distinct.
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, the coefficients are:
[tex]\[ a = 1, \quad b = -9, \quad c = 5 \][/tex]
Step-by-Step Solution:
1. Calculate the discriminant:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
[tex]\[ \Delta = (-9)^2 - 4(1)(5) \][/tex]
[tex]\[ \Delta = 81 - 20 \][/tex]
[tex]\[ \Delta = 61 \][/tex]
2. Substitute the values into the quadratic formula:
[tex]\[ x = \frac{-(-9) \pm \sqrt{61}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{9 \pm \sqrt{61}}{2} \][/tex]
Thus, the solutions are:
[tex]\[ x_1 = \frac{9 + \sqrt{61}}{2} \][/tex]
[tex]\[ x_2 = \frac{9 - \sqrt{61}}{2} \][/tex]
3. Approximate the solutions numerically for clarity:
The approximate numerical values of the solutions are:
[tex]\[ x_1 \approx 8.405124837953327 \][/tex]
[tex]\[ x_2 \approx 0.594875162046673 \][/tex]
Therefore, the exact solutions of the quadratic equation [tex]\(x^2 - 9x + 5 = 0\)[/tex] are:
[tex]\[ x = \frac{9 + \sqrt{61}}{2} \][/tex]
and
[tex]\[ x = \frac{9 - \sqrt{61}}{2} \][/tex]
With the discriminant being 61, which confirms the solutions are real and distinct.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.