Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Let's delve into the detailed solution step-by-step.
1. Combine the fractions on the right side:
Given the equation:
[tex]\[ x^2 + \frac{b}{a} x + \left( \frac{b}{2a} \right)^2 = -\frac{4ac}{4a^2} + \frac{b^2}{4a^2} \][/tex]
We want a common denominator to combine the fractions. The common denominator is [tex]\( 4a^2 \)[/tex]:
[tex]\[ -\frac{4ac}{4a^2} + \frac{b^2}{4a^2} = \frac{b^2 - 4ac}{4a^2} \][/tex]
2. Add the fractions together on the right side:
After combining the fractions, the equation becomes:
[tex]\[ x^2 + \frac{b}{a} x + \left( \frac{b}{2a} \right)^2 = \frac{b^2 - 4ac}{4a^2} \][/tex]
3. Rewrite the left side as a perfect square trinomial:
Notice that the left side of the equation is a perfect square trinomial. It can be expressed as a squared binomial:
[tex]\[ \left( x + \frac{b}{2a} \right)^2 = \frac{b^2 - 4ac}{4a^2} \][/tex]
4. Take the square root of both sides:
To solve for [tex]\( x \)[/tex], we take the square root of both sides. Remember that when you take the square root of both sides, you should consider both the positive and negative roots:
[tex]\[ x + \frac{b}{2a} = \pm \sqrt{ \frac{b^2 - 4ac}{4a^2} } \][/tex]
5. Simplify the square root:
The square root on the right side can be simplified:
[tex]\[ \sqrt{ \frac{b^2 - 4ac}{4a^2} } = \frac{ \sqrt{b^2 - 4ac} }{2a} \][/tex]
Thus, the equation becomes:
[tex]\[ x + \frac{b}{2a} = \pm \frac{ \sqrt{b^2 - 4ac} }{2a} \][/tex]
6. Isolate [tex]\( x \)[/tex] on one side:
Finally, to solve for [tex]\( x \)[/tex], we subtract [tex]\( \frac{b}{2a} \)[/tex] from both sides:
[tex]\[ x = - \frac{b}{2a} \pm \frac{ \sqrt{b^2 - 4ac} }{2a} \][/tex]
Combine the fractions to get the final form of the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
This is the standard quadratic formula used to solve quadratic equations of the form [tex]\( ax^2 + bx + c = 0 \)[/tex].
Therefore, our final answer is:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
1. Combine the fractions on the right side:
Given the equation:
[tex]\[ x^2 + \frac{b}{a} x + \left( \frac{b}{2a} \right)^2 = -\frac{4ac}{4a^2} + \frac{b^2}{4a^2} \][/tex]
We want a common denominator to combine the fractions. The common denominator is [tex]\( 4a^2 \)[/tex]:
[tex]\[ -\frac{4ac}{4a^2} + \frac{b^2}{4a^2} = \frac{b^2 - 4ac}{4a^2} \][/tex]
2. Add the fractions together on the right side:
After combining the fractions, the equation becomes:
[tex]\[ x^2 + \frac{b}{a} x + \left( \frac{b}{2a} \right)^2 = \frac{b^2 - 4ac}{4a^2} \][/tex]
3. Rewrite the left side as a perfect square trinomial:
Notice that the left side of the equation is a perfect square trinomial. It can be expressed as a squared binomial:
[tex]\[ \left( x + \frac{b}{2a} \right)^2 = \frac{b^2 - 4ac}{4a^2} \][/tex]
4. Take the square root of both sides:
To solve for [tex]\( x \)[/tex], we take the square root of both sides. Remember that when you take the square root of both sides, you should consider both the positive and negative roots:
[tex]\[ x + \frac{b}{2a} = \pm \sqrt{ \frac{b^2 - 4ac}{4a^2} } \][/tex]
5. Simplify the square root:
The square root on the right side can be simplified:
[tex]\[ \sqrt{ \frac{b^2 - 4ac}{4a^2} } = \frac{ \sqrt{b^2 - 4ac} }{2a} \][/tex]
Thus, the equation becomes:
[tex]\[ x + \frac{b}{2a} = \pm \frac{ \sqrt{b^2 - 4ac} }{2a} \][/tex]
6. Isolate [tex]\( x \)[/tex] on one side:
Finally, to solve for [tex]\( x \)[/tex], we subtract [tex]\( \frac{b}{2a} \)[/tex] from both sides:
[tex]\[ x = - \frac{b}{2a} \pm \frac{ \sqrt{b^2 - 4ac} }{2a} \][/tex]
Combine the fractions to get the final form of the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
This is the standard quadratic formula used to solve quadratic equations of the form [tex]\( ax^2 + bx + c = 0 \)[/tex].
Therefore, our final answer is:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.