Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve this problem, we need to follow a few steps.
1. Understanding the fraction:
The question gives us the fraction [tex]\(\frac{5}{8.3}\)[/tex].
2. Calculating the value of the fraction:
We start by simplifying the fraction:
[tex]\[ \frac{5}{8.3} \approx 0.6024 \][/tex]
3. Finding the angle whose sine is the given fraction:
We need to find the angle [tex]\( x \)[/tex] such that
[tex]\[ \sin(x) = 0.6024 \][/tex]
To obtain this angle, we use the inverse sine function, also known as [tex]\(\sin^{-1}\)[/tex] or [tex]\(\arcsin\)[/tex].
4. Calculating the angle in radians:
Using [tex]\(\arcsin\)[/tex] on the value [tex]\(0.6024\)[/tex], we get:
[tex]\[ x = \arcsin(0.6024) \approx 0.6465 \text{ radians} \][/tex]
5. Converting the angle from radians to degrees:
Since many geometric problems prefer degrees, we convert radians to degrees using the conversion factor [tex]\(\frac{180}{\pi}\)[/tex]. Thus,
[tex]\[ x \approx 0.6465 \times \frac{180}{\pi} \approx 37.04 \text{ degrees} \][/tex]
Therefore, the measure of the unknown angle [tex]\( x \)[/tex] in a triangle is approximately 37.04 degrees, as it equals [tex]\(\sin^{-1}\left(\frac{5}{8.3}\right)\)[/tex].
1. Understanding the fraction:
The question gives us the fraction [tex]\(\frac{5}{8.3}\)[/tex].
2. Calculating the value of the fraction:
We start by simplifying the fraction:
[tex]\[ \frac{5}{8.3} \approx 0.6024 \][/tex]
3. Finding the angle whose sine is the given fraction:
We need to find the angle [tex]\( x \)[/tex] such that
[tex]\[ \sin(x) = 0.6024 \][/tex]
To obtain this angle, we use the inverse sine function, also known as [tex]\(\sin^{-1}\)[/tex] or [tex]\(\arcsin\)[/tex].
4. Calculating the angle in radians:
Using [tex]\(\arcsin\)[/tex] on the value [tex]\(0.6024\)[/tex], we get:
[tex]\[ x = \arcsin(0.6024) \approx 0.6465 \text{ radians} \][/tex]
5. Converting the angle from radians to degrees:
Since many geometric problems prefer degrees, we convert radians to degrees using the conversion factor [tex]\(\frac{180}{\pi}\)[/tex]. Thus,
[tex]\[ x \approx 0.6465 \times \frac{180}{\pi} \approx 37.04 \text{ degrees} \][/tex]
Therefore, the measure of the unknown angle [tex]\( x \)[/tex] in a triangle is approximately 37.04 degrees, as it equals [tex]\(\sin^{-1}\left(\frac{5}{8.3}\right)\)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.