Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To identify an equation in slope-intercept form for the line that is parallel to the given line [tex]\( y = 5x + 2 \)[/tex] and passes through the point [tex]\((-6, -1)\)[/tex], follow these steps:
1. Determine the slope of the given line:
The given line is [tex]\( y = 5x + 2 \)[/tex], which is already in slope-intercept form [tex]\( y = mx + b \)[/tex]. Here, [tex]\( m \)[/tex] (the slope) is 5.
2. Use the point-slope form for the new line:
Since parallel lines have the same slope, the slope [tex]\( m \)[/tex] of the desired line is also 5. We need to find the equation of the line that passes through the point [tex]\((-6, -1)\)[/tex].
The point-slope form of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Here, [tex]\((x_1, y_1)\)[/tex] is the point [tex]\((-6, -1)\)[/tex] and [tex]\( m = 5 \)[/tex].
3. Substitute the given point and slope into the point-slope form:
[tex]\[ y - (-1) = 5(x - (-6)) \][/tex]
Simplify:
[tex]\[ y + 1 = 5(x + 6) \][/tex]
4. Distribute and simplify to get the slope-intercept form:
[tex]\[ y + 1 = 5x + 30 \][/tex]
[tex]\[ y = 5x + 30 - 1 \][/tex]
[tex]\[ y = 5x + 29 \][/tex]
So, the equation of the line parallel to [tex]\( y = 5x + 2 \)[/tex] and passing through [tex]\((-6, -1)\)[/tex] is [tex]\( y = 5x + 29 \)[/tex].
The correct choice from the given options is:
D. [tex]\( y = 5x + 29 \)[/tex]
1. Determine the slope of the given line:
The given line is [tex]\( y = 5x + 2 \)[/tex], which is already in slope-intercept form [tex]\( y = mx + b \)[/tex]. Here, [tex]\( m \)[/tex] (the slope) is 5.
2. Use the point-slope form for the new line:
Since parallel lines have the same slope, the slope [tex]\( m \)[/tex] of the desired line is also 5. We need to find the equation of the line that passes through the point [tex]\((-6, -1)\)[/tex].
The point-slope form of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Here, [tex]\((x_1, y_1)\)[/tex] is the point [tex]\((-6, -1)\)[/tex] and [tex]\( m = 5 \)[/tex].
3. Substitute the given point and slope into the point-slope form:
[tex]\[ y - (-1) = 5(x - (-6)) \][/tex]
Simplify:
[tex]\[ y + 1 = 5(x + 6) \][/tex]
4. Distribute and simplify to get the slope-intercept form:
[tex]\[ y + 1 = 5x + 30 \][/tex]
[tex]\[ y = 5x + 30 - 1 \][/tex]
[tex]\[ y = 5x + 29 \][/tex]
So, the equation of the line parallel to [tex]\( y = 5x + 2 \)[/tex] and passing through [tex]\((-6, -1)\)[/tex] is [tex]\( y = 5x + 29 \)[/tex].
The correct choice from the given options is:
D. [tex]\( y = 5x + 29 \)[/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.