Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the coordinates of the minimum point of the curve [tex]\( y = x^2 - 6x + 5 \)[/tex] by completing the square, follow these steps:
1. Identify the quadratic expression: [tex]\( y = x^2 - 6x + 5 \)[/tex].
2. Rewrite the quadratic expression in the form of a perfect square trinomial:
- First, look at the coefficient of [tex]\( x \)[/tex], which is -6.
- Divide this coefficient by 2: [tex]\( \frac{-6}{2} = -3 \)[/tex].
- Square the result: [tex]\( (-3)^2 = 9 \)[/tex].
Therefore, the expression [tex]\( -6x \)[/tex] can be transformed by completing the square:
[tex]\[ y = x^2 - 6x + 9 - 9 + 5 \][/tex]
3. Group the terms to form a perfect square trinomial and simplify the constant terms:
The expression can be rewritten as:
[tex]\[ y = (x^2 - 6x + 9) - 9 + 5 \][/tex]
Here, [tex]\( x^2 - 6x + 9 \)[/tex] is a perfect square trinomial, equivalent to [tex]\( (x - 3)^2 \)[/tex].
4. Combine the constants:
[tex]\[ y = (x - 3)^2 - 4 \][/tex]
5. Identify the vertex form of the equation:
The equation [tex]\( y = (x - 3)^2 - 4 \)[/tex] is in the vertex form [tex]\( y = a(x - h)^2 + k \)[/tex], where [tex]\((h, k)\)[/tex] is the vertex of the parabola.
6. Determine the vertex:
By comparing [tex]\( y = (x - 3)^2 - 4 \)[/tex] with the vertex form, we see that [tex]\( h = 3 \)[/tex] and [tex]\( k = -4 \)[/tex].
Hence, the coordinates of the minimum point (vertex) of the curve [tex]\( y = x^2 - 6x + 5 \)[/tex] are [tex]\((3, -4)\)[/tex].
□
1. Identify the quadratic expression: [tex]\( y = x^2 - 6x + 5 \)[/tex].
2. Rewrite the quadratic expression in the form of a perfect square trinomial:
- First, look at the coefficient of [tex]\( x \)[/tex], which is -6.
- Divide this coefficient by 2: [tex]\( \frac{-6}{2} = -3 \)[/tex].
- Square the result: [tex]\( (-3)^2 = 9 \)[/tex].
Therefore, the expression [tex]\( -6x \)[/tex] can be transformed by completing the square:
[tex]\[ y = x^2 - 6x + 9 - 9 + 5 \][/tex]
3. Group the terms to form a perfect square trinomial and simplify the constant terms:
The expression can be rewritten as:
[tex]\[ y = (x^2 - 6x + 9) - 9 + 5 \][/tex]
Here, [tex]\( x^2 - 6x + 9 \)[/tex] is a perfect square trinomial, equivalent to [tex]\( (x - 3)^2 \)[/tex].
4. Combine the constants:
[tex]\[ y = (x - 3)^2 - 4 \][/tex]
5. Identify the vertex form of the equation:
The equation [tex]\( y = (x - 3)^2 - 4 \)[/tex] is in the vertex form [tex]\( y = a(x - h)^2 + k \)[/tex], where [tex]\((h, k)\)[/tex] is the vertex of the parabola.
6. Determine the vertex:
By comparing [tex]\( y = (x - 3)^2 - 4 \)[/tex] with the vertex form, we see that [tex]\( h = 3 \)[/tex] and [tex]\( k = -4 \)[/tex].
Hence, the coordinates of the minimum point (vertex) of the curve [tex]\( y = x^2 - 6x + 5 \)[/tex] are [tex]\((3, -4)\)[/tex].
□
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.