Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Sure, let’s work through the problem step-by-step. We are given the equation:
[tex]\[ P(n, 2) + 24 = P(2n, 2) \][/tex]
where [tex]\(P(n, k)\)[/tex] is the number of permutations of [tex]\(n\)[/tex] items taken [tex]\(k\)[/tex] at a time.
The formula for permutations [tex]\(P(n, k)\)[/tex] is:
[tex]\[ P(n, k) = \frac{n!}{(n-k)!} \][/tex]
For [tex]\(P(n, 2)\)[/tex], the formula becomes:
[tex]\[ P(n, 2) = \frac{n!}{(n-2)!} \][/tex]
Similarly, for [tex]\(P(2n, 2)\)[/tex], the formula is:
[tex]\[ P(2n, 2) = \frac{(2n)!}{(2n-2)!} \][/tex]
Let's substitute these into the given equation:
[tex]\[ \frac{n!}{(n-2)!} + 24 = \frac{(2n)!}{(2n-2)!} \][/tex]
We know that:
[tex]\[ \frac{n!}{(n-2)!} = n \times (n-1) \][/tex]
So, the equation becomes:
[tex]\[ n(n-1) + 24 = \frac{(2n)!}{(2n-2)!} \][/tex]
Next, we can simplify [tex]\(\frac{(2n)!}{(2n-2)!}\)[/tex] as:
[tex]\[ \frac{(2n)!}{(2n-2)!} = (2n)(2n-1) \][/tex]
Thus, the equation now is:
[tex]\[ n(n-1) + 24 = (2n)(2n-1) \][/tex]
We expand both sides:
[tex]\[ n^2 - n + 24 = 4n^2 - 2n \][/tex]
Rearrange all terms to one side of the equation to set it to zero:
[tex]\[ n^2 - n + 24 = 4n^2 - 2n \][/tex]
[tex]\[ n^2 - n + 24 - 4n^2 + 2n = 0 \][/tex]
Combine like terms:
[tex]\[ -3n^2 + n + 24 = 0 \][/tex]
Multiply through by -1 to make the quadratic easier to work with:
[tex]\[ 3n^2 - n - 24 = 0 \][/tex]
This is a standard quadratic equation of the form [tex]\(ax^2 + bx + c = 0\)[/tex], with [tex]\(a = 3\)[/tex], [tex]\(b = -1\)[/tex], and [tex]\(c = -24\)[/tex]. We can solve this using the quadratic formula:
[tex]\[ n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Substitute [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] into the formula:
[tex]\[ n = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(3)(-24)}}{2(3)} \][/tex]
[tex]\[ n = \frac{1 \pm \sqrt{1 + 288}}{6} \][/tex]
[tex]\[ n = \frac{1 \pm \sqrt{289}}{6} \][/tex]
[tex]\[ n = \frac{1 \pm 17}{6} \][/tex]
This gives us two potential solutions:
[tex]\[ n = \frac{1 + 17}{6} = \frac{18}{6} = 3 \][/tex]
[tex]\[ n = \frac{1 - 17}{6} = \frac{-16}{6} = -\frac{8}{3} \][/tex]
Since [tex]\(n\)[/tex] must be positive, we discard [tex]\(-\frac{8}{3}\)[/tex] and keep:
[tex]\[ n = 3 \][/tex]
Thus, the positive value of [tex]\(n\)[/tex] is [tex]\(\boxed{3}\)[/tex].
[tex]\[ P(n, 2) + 24 = P(2n, 2) \][/tex]
where [tex]\(P(n, k)\)[/tex] is the number of permutations of [tex]\(n\)[/tex] items taken [tex]\(k\)[/tex] at a time.
The formula for permutations [tex]\(P(n, k)\)[/tex] is:
[tex]\[ P(n, k) = \frac{n!}{(n-k)!} \][/tex]
For [tex]\(P(n, 2)\)[/tex], the formula becomes:
[tex]\[ P(n, 2) = \frac{n!}{(n-2)!} \][/tex]
Similarly, for [tex]\(P(2n, 2)\)[/tex], the formula is:
[tex]\[ P(2n, 2) = \frac{(2n)!}{(2n-2)!} \][/tex]
Let's substitute these into the given equation:
[tex]\[ \frac{n!}{(n-2)!} + 24 = \frac{(2n)!}{(2n-2)!} \][/tex]
We know that:
[tex]\[ \frac{n!}{(n-2)!} = n \times (n-1) \][/tex]
So, the equation becomes:
[tex]\[ n(n-1) + 24 = \frac{(2n)!}{(2n-2)!} \][/tex]
Next, we can simplify [tex]\(\frac{(2n)!}{(2n-2)!}\)[/tex] as:
[tex]\[ \frac{(2n)!}{(2n-2)!} = (2n)(2n-1) \][/tex]
Thus, the equation now is:
[tex]\[ n(n-1) + 24 = (2n)(2n-1) \][/tex]
We expand both sides:
[tex]\[ n^2 - n + 24 = 4n^2 - 2n \][/tex]
Rearrange all terms to one side of the equation to set it to zero:
[tex]\[ n^2 - n + 24 = 4n^2 - 2n \][/tex]
[tex]\[ n^2 - n + 24 - 4n^2 + 2n = 0 \][/tex]
Combine like terms:
[tex]\[ -3n^2 + n + 24 = 0 \][/tex]
Multiply through by -1 to make the quadratic easier to work with:
[tex]\[ 3n^2 - n - 24 = 0 \][/tex]
This is a standard quadratic equation of the form [tex]\(ax^2 + bx + c = 0\)[/tex], with [tex]\(a = 3\)[/tex], [tex]\(b = -1\)[/tex], and [tex]\(c = -24\)[/tex]. We can solve this using the quadratic formula:
[tex]\[ n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Substitute [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] into the formula:
[tex]\[ n = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(3)(-24)}}{2(3)} \][/tex]
[tex]\[ n = \frac{1 \pm \sqrt{1 + 288}}{6} \][/tex]
[tex]\[ n = \frac{1 \pm \sqrt{289}}{6} \][/tex]
[tex]\[ n = \frac{1 \pm 17}{6} \][/tex]
This gives us two potential solutions:
[tex]\[ n = \frac{1 + 17}{6} = \frac{18}{6} = 3 \][/tex]
[tex]\[ n = \frac{1 - 17}{6} = \frac{-16}{6} = -\frac{8}{3} \][/tex]
Since [tex]\(n\)[/tex] must be positive, we discard [tex]\(-\frac{8}{3}\)[/tex] and keep:
[tex]\[ n = 3 \][/tex]
Thus, the positive value of [tex]\(n\)[/tex] is [tex]\(\boxed{3}\)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.