Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the linear approximation [tex]\( L(x) \)[/tex] of the function [tex]\( g(x) = \sqrt[5]{1 + x} \)[/tex] at [tex]\( a = 0 \)[/tex], we will follow these steps:
1. Determine [tex]\( g(a) \)[/tex]:
Calculate the function value at [tex]\( a = 0 \)[/tex]:
[tex]\[ g(0) = \sqrt[5]{1 + 0} = \sqrt[5]{1} = 1 \][/tex]
2. Compute [tex]\( g'(a) \)[/tex]:
Calculate the derivative of the function [tex]\( g(x) \)[/tex]:
[tex]\[ g(x) = (1 + x)^{\frac{1}{5}} \][/tex]
Using the power rule for differentiation:
[tex]\[ g'(x) = \frac{1}{5}(1 + x)^{\frac{1}{5} - 1} = \frac{1}{5}(1 + x)^{-\frac{4}{5}} \][/tex]
Evaluate the derivative at [tex]\( x = 0 \)[/tex]:
[tex]\[ g'(0) = \frac{1}{5}(1 + 0)^{-\frac{4}{5}} = \frac{1}{5}(1)^{-\frac{4}{5}} = \frac{1}{5} \][/tex]
3. Linear approximation [tex]\( L(x) \)[/tex]:
The linear approximation of [tex]\( g(x) \)[/tex] at [tex]\( a = 0 \)[/tex] is given by:
[tex]\[ L(x) = g(a) + g'(a) \cdot (x - a) \][/tex]
Plugging in [tex]\( a = 0 \)[/tex]:
[tex]\[ L(x) = g(0) + g'(0) \cdot (x - 0) = 1 + \frac{1}{5} x = 1 + 0.2x \][/tex]
Thus, the linear approximation is:
[tex]\[ L(x) \approx 1 + 0.2x \][/tex]
4. Approximate [tex]\( \sqrt[5]{0.95} \)[/tex] using [tex]\( L(x) \)[/tex]:
[tex]\[ \sqrt[5]{0.95} \approx L(0.95 - 1) \][/tex]
Calculate [tex]\( L(-0.05) \)[/tex]:
[tex]\[ L(-0.05) = 1 + 0.2 \cdot (-0.05) = 1 - 0.01 = 0.990 \][/tex]
Therefore,
[tex]\[ \sqrt[5]{0.95} \approx 0.990 \][/tex]
5. Approximate [tex]\( \sqrt[5]{1.1} \)[/tex] using [tex]\( L(x) \)[/tex]:
[tex]\[ \sqrt[5]{1.1} \approx L(1.1 - 1) \][/tex]
Calculate [tex]\( L(0.1) \)[/tex]:
[tex]\[ L(0.1) = 1 + 0.2 \cdot 0.1 = 1 + 0.02 = 1.020 \][/tex]
Therefore,
[tex]\[ \sqrt[5]{1.1} \approx 1.020 \][/tex]
In conclusion:
[tex]\[ \begin{aligned} L(x) &\approx 1 + 0.2x \\ \sqrt[5]{0.95} &\approx 0.990 \\ \sqrt[5]{1.1} &\approx 1.020 \end{aligned} \][/tex]
1. Determine [tex]\( g(a) \)[/tex]:
Calculate the function value at [tex]\( a = 0 \)[/tex]:
[tex]\[ g(0) = \sqrt[5]{1 + 0} = \sqrt[5]{1} = 1 \][/tex]
2. Compute [tex]\( g'(a) \)[/tex]:
Calculate the derivative of the function [tex]\( g(x) \)[/tex]:
[tex]\[ g(x) = (1 + x)^{\frac{1}{5}} \][/tex]
Using the power rule for differentiation:
[tex]\[ g'(x) = \frac{1}{5}(1 + x)^{\frac{1}{5} - 1} = \frac{1}{5}(1 + x)^{-\frac{4}{5}} \][/tex]
Evaluate the derivative at [tex]\( x = 0 \)[/tex]:
[tex]\[ g'(0) = \frac{1}{5}(1 + 0)^{-\frac{4}{5}} = \frac{1}{5}(1)^{-\frac{4}{5}} = \frac{1}{5} \][/tex]
3. Linear approximation [tex]\( L(x) \)[/tex]:
The linear approximation of [tex]\( g(x) \)[/tex] at [tex]\( a = 0 \)[/tex] is given by:
[tex]\[ L(x) = g(a) + g'(a) \cdot (x - a) \][/tex]
Plugging in [tex]\( a = 0 \)[/tex]:
[tex]\[ L(x) = g(0) + g'(0) \cdot (x - 0) = 1 + \frac{1}{5} x = 1 + 0.2x \][/tex]
Thus, the linear approximation is:
[tex]\[ L(x) \approx 1 + 0.2x \][/tex]
4. Approximate [tex]\( \sqrt[5]{0.95} \)[/tex] using [tex]\( L(x) \)[/tex]:
[tex]\[ \sqrt[5]{0.95} \approx L(0.95 - 1) \][/tex]
Calculate [tex]\( L(-0.05) \)[/tex]:
[tex]\[ L(-0.05) = 1 + 0.2 \cdot (-0.05) = 1 - 0.01 = 0.990 \][/tex]
Therefore,
[tex]\[ \sqrt[5]{0.95} \approx 0.990 \][/tex]
5. Approximate [tex]\( \sqrt[5]{1.1} \)[/tex] using [tex]\( L(x) \)[/tex]:
[tex]\[ \sqrt[5]{1.1} \approx L(1.1 - 1) \][/tex]
Calculate [tex]\( L(0.1) \)[/tex]:
[tex]\[ L(0.1) = 1 + 0.2 \cdot 0.1 = 1 + 0.02 = 1.020 \][/tex]
Therefore,
[tex]\[ \sqrt[5]{1.1} \approx 1.020 \][/tex]
In conclusion:
[tex]\[ \begin{aligned} L(x) &\approx 1 + 0.2x \\ \sqrt[5]{0.95} &\approx 0.990 \\ \sqrt[5]{1.1} &\approx 1.020 \end{aligned} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.