At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the linear approximation [tex]\( L(x) \)[/tex] of the function [tex]\( g(x) = \sqrt[5]{1 + x} \)[/tex] at [tex]\( a = 0 \)[/tex], we will follow these steps:
1. Determine [tex]\( g(a) \)[/tex]:
Calculate the function value at [tex]\( a = 0 \)[/tex]:
[tex]\[ g(0) = \sqrt[5]{1 + 0} = \sqrt[5]{1} = 1 \][/tex]
2. Compute [tex]\( g'(a) \)[/tex]:
Calculate the derivative of the function [tex]\( g(x) \)[/tex]:
[tex]\[ g(x) = (1 + x)^{\frac{1}{5}} \][/tex]
Using the power rule for differentiation:
[tex]\[ g'(x) = \frac{1}{5}(1 + x)^{\frac{1}{5} - 1} = \frac{1}{5}(1 + x)^{-\frac{4}{5}} \][/tex]
Evaluate the derivative at [tex]\( x = 0 \)[/tex]:
[tex]\[ g'(0) = \frac{1}{5}(1 + 0)^{-\frac{4}{5}} = \frac{1}{5}(1)^{-\frac{4}{5}} = \frac{1}{5} \][/tex]
3. Linear approximation [tex]\( L(x) \)[/tex]:
The linear approximation of [tex]\( g(x) \)[/tex] at [tex]\( a = 0 \)[/tex] is given by:
[tex]\[ L(x) = g(a) + g'(a) \cdot (x - a) \][/tex]
Plugging in [tex]\( a = 0 \)[/tex]:
[tex]\[ L(x) = g(0) + g'(0) \cdot (x - 0) = 1 + \frac{1}{5} x = 1 + 0.2x \][/tex]
Thus, the linear approximation is:
[tex]\[ L(x) \approx 1 + 0.2x \][/tex]
4. Approximate [tex]\( \sqrt[5]{0.95} \)[/tex] using [tex]\( L(x) \)[/tex]:
[tex]\[ \sqrt[5]{0.95} \approx L(0.95 - 1) \][/tex]
Calculate [tex]\( L(-0.05) \)[/tex]:
[tex]\[ L(-0.05) = 1 + 0.2 \cdot (-0.05) = 1 - 0.01 = 0.990 \][/tex]
Therefore,
[tex]\[ \sqrt[5]{0.95} \approx 0.990 \][/tex]
5. Approximate [tex]\( \sqrt[5]{1.1} \)[/tex] using [tex]\( L(x) \)[/tex]:
[tex]\[ \sqrt[5]{1.1} \approx L(1.1 - 1) \][/tex]
Calculate [tex]\( L(0.1) \)[/tex]:
[tex]\[ L(0.1) = 1 + 0.2 \cdot 0.1 = 1 + 0.02 = 1.020 \][/tex]
Therefore,
[tex]\[ \sqrt[5]{1.1} \approx 1.020 \][/tex]
In conclusion:
[tex]\[ \begin{aligned} L(x) &\approx 1 + 0.2x \\ \sqrt[5]{0.95} &\approx 0.990 \\ \sqrt[5]{1.1} &\approx 1.020 \end{aligned} \][/tex]
1. Determine [tex]\( g(a) \)[/tex]:
Calculate the function value at [tex]\( a = 0 \)[/tex]:
[tex]\[ g(0) = \sqrt[5]{1 + 0} = \sqrt[5]{1} = 1 \][/tex]
2. Compute [tex]\( g'(a) \)[/tex]:
Calculate the derivative of the function [tex]\( g(x) \)[/tex]:
[tex]\[ g(x) = (1 + x)^{\frac{1}{5}} \][/tex]
Using the power rule for differentiation:
[tex]\[ g'(x) = \frac{1}{5}(1 + x)^{\frac{1}{5} - 1} = \frac{1}{5}(1 + x)^{-\frac{4}{5}} \][/tex]
Evaluate the derivative at [tex]\( x = 0 \)[/tex]:
[tex]\[ g'(0) = \frac{1}{5}(1 + 0)^{-\frac{4}{5}} = \frac{1}{5}(1)^{-\frac{4}{5}} = \frac{1}{5} \][/tex]
3. Linear approximation [tex]\( L(x) \)[/tex]:
The linear approximation of [tex]\( g(x) \)[/tex] at [tex]\( a = 0 \)[/tex] is given by:
[tex]\[ L(x) = g(a) + g'(a) \cdot (x - a) \][/tex]
Plugging in [tex]\( a = 0 \)[/tex]:
[tex]\[ L(x) = g(0) + g'(0) \cdot (x - 0) = 1 + \frac{1}{5} x = 1 + 0.2x \][/tex]
Thus, the linear approximation is:
[tex]\[ L(x) \approx 1 + 0.2x \][/tex]
4. Approximate [tex]\( \sqrt[5]{0.95} \)[/tex] using [tex]\( L(x) \)[/tex]:
[tex]\[ \sqrt[5]{0.95} \approx L(0.95 - 1) \][/tex]
Calculate [tex]\( L(-0.05) \)[/tex]:
[tex]\[ L(-0.05) = 1 + 0.2 \cdot (-0.05) = 1 - 0.01 = 0.990 \][/tex]
Therefore,
[tex]\[ \sqrt[5]{0.95} \approx 0.990 \][/tex]
5. Approximate [tex]\( \sqrt[5]{1.1} \)[/tex] using [tex]\( L(x) \)[/tex]:
[tex]\[ \sqrt[5]{1.1} \approx L(1.1 - 1) \][/tex]
Calculate [tex]\( L(0.1) \)[/tex]:
[tex]\[ L(0.1) = 1 + 0.2 \cdot 0.1 = 1 + 0.02 = 1.020 \][/tex]
Therefore,
[tex]\[ \sqrt[5]{1.1} \approx 1.020 \][/tex]
In conclusion:
[tex]\[ \begin{aligned} L(x) &\approx 1 + 0.2x \\ \sqrt[5]{0.95} &\approx 0.990 \\ \sqrt[5]{1.1} &\approx 1.020 \end{aligned} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.