Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
The reaction in question is:
[tex]\[ H_2 (g) + I_2 (g) \rightleftharpoons 2 HI (g) \][/tex]
We need to determine the equilibrium concentrations when 1.00 mole of [tex]\( I_2 \)[/tex] and 1.00 mole of [tex]\( H_2 \)[/tex] are placed in a 5-liter container. The equilibrium constant [tex]\( K_{\text{eq}} \)[/tex] is 64.0.
### Step-by-Step Solution:
1. Calculate Initial Concentrations:
Given:
- Initial moles of [tex]\( I_2 \)[/tex] = 1.00 mole
- Initial moles of [tex]\( H_2 \)[/tex] = 1.00 mole
- Volume of container = 5.0 liters
The initial concentrations (Molarity) are:
[tex]\[ [I_2]_{\text{initial}} = \frac{1.00 \, \text{mole}}{5.0 \, \text{L}} = 0.20 \, \text{M} \][/tex]
[tex]\[ [H_2]_{\text{initial}} = \frac{1.00 \, \text{mole}}{5.0 \, \text{L}} = 0.20 \, \text{M} \][/tex]
2. Define Change in Concentration:
Let [tex]\( x \)[/tex] be the amount of [tex]\( I_2 \)[/tex] and [tex]\( H_2 \)[/tex] reacted to form [tex]\( HI \)[/tex]. Since the stoichiometry of the balanced equation is 1:1:2, the changes in concentrations are:
[tex]\[ [I_2] = 0.20 - x \][/tex]
[tex]\[ [H_2] = 0.20 - x \][/tex]
[tex]\[ [HI] = 2x \][/tex]
3. Establish the Equilibrium Expression:
[tex]\[ K_{\text{eq}} = \frac{[HI]^2}{[H_2][I_2]} \][/tex]
Substituting the equilibrium concentrations,
[tex]\[ 64.0 = \frac{(2x)^2}{(0.20 - x)(0.20 - x)} \][/tex]
Simplify and solve for [tex]\( x \)[/tex]:
[tex]\[ 64.0 = \frac{4x^2}{(0.20 - x)^2} \][/tex]
[tex]\[ 64.0 = \frac{4x^2}{0.04 - 0.4x + x^2} \][/tex]
[tex]\[ 64(0.04 - 0.4x + x^2) = 4x^2 \][/tex]
[tex]\[ 2.56 - 25.6x + 64x^2 = 4x^2 \][/tex]
[tex]\[ 2.56 - 25.6x + 60x^2 = 0 \][/tex]
4. Solve the Quadratic Equation:
The quadratic equation is:
[tex]\[ 60x^2 - 25.6x + 2.56 = 0 \][/tex]
Solve for [tex]\( x \)[/tex] using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]:
Here, [tex]\( a = 60 \)[/tex], [tex]\( b = -25.6 \)[/tex], and [tex]\( c = 2.56 \)[/tex].
[tex]\[ x = \frac{25.6 \pm \sqrt{(-25.6)^2 - 4 \cdot 60 \cdot 2.56}}{2 \cdot 60} \][/tex]
[tex]\[ x = \frac{25.6 \pm \sqrt{655.36 - 614.40}}{120} \][/tex]
[tex]\[ x = \frac{25.6 \pm \sqrt{40.96}}{120} \][/tex]
[tex]\[ x = \frac{25.6 \pm 6.4}{120} \][/tex]
The two solutions are:
[tex]\[ x_1 = \frac{32}{120} = \frac{8}{30} = \frac{4}{15} \approx 0.267 \, \text{M} \][/tex]
[tex]\[ x_2 = \frac{19.2}{120} = \frac{16}{100} = \frac{4}{25} = 0.16 \, \text{M} \][/tex]
Only the value [tex]\( x = 0.16 \, \text{M} \)[/tex] is physically feasible because it keeps the concentrations of [tex]\( I_2 \)[/tex] and [tex]\( H_2 \)[/tex] positive.
5. Calculate the Equilibrium Concentrations:
Using [tex]\( x = 0.16 \)[/tex]:
[tex]\[ [I_2]_{\text{eq}} = 0.20 - 0.16 = 0.04 \, \text{M} \][/tex]
[tex]\[ [H_2]_{\text{eq}} = 0.20 - 0.16 = 0.04 \, \text{M} \][/tex]
[tex]\[ [HI]_{\text{eq}} = 2 \times 0.16 = 0.32 \, \text{M} \][/tex]
### Conclusion
The equilibrium concentrations are:
[tex]\[ [I_2]_{\text{eq}} = 0.04 \, \text{M} \][/tex]
[tex]\[ [H_2]_{\text{eq}} = 0.04 \, \text{M} \][/tex]
[tex]\[ [HI]_{\text{eq}} = 0.32 \, \text{M} \][/tex]
[tex]\[ H_2 (g) + I_2 (g) \rightleftharpoons 2 HI (g) \][/tex]
We need to determine the equilibrium concentrations when 1.00 mole of [tex]\( I_2 \)[/tex] and 1.00 mole of [tex]\( H_2 \)[/tex] are placed in a 5-liter container. The equilibrium constant [tex]\( K_{\text{eq}} \)[/tex] is 64.0.
### Step-by-Step Solution:
1. Calculate Initial Concentrations:
Given:
- Initial moles of [tex]\( I_2 \)[/tex] = 1.00 mole
- Initial moles of [tex]\( H_2 \)[/tex] = 1.00 mole
- Volume of container = 5.0 liters
The initial concentrations (Molarity) are:
[tex]\[ [I_2]_{\text{initial}} = \frac{1.00 \, \text{mole}}{5.0 \, \text{L}} = 0.20 \, \text{M} \][/tex]
[tex]\[ [H_2]_{\text{initial}} = \frac{1.00 \, \text{mole}}{5.0 \, \text{L}} = 0.20 \, \text{M} \][/tex]
2. Define Change in Concentration:
Let [tex]\( x \)[/tex] be the amount of [tex]\( I_2 \)[/tex] and [tex]\( H_2 \)[/tex] reacted to form [tex]\( HI \)[/tex]. Since the stoichiometry of the balanced equation is 1:1:2, the changes in concentrations are:
[tex]\[ [I_2] = 0.20 - x \][/tex]
[tex]\[ [H_2] = 0.20 - x \][/tex]
[tex]\[ [HI] = 2x \][/tex]
3. Establish the Equilibrium Expression:
[tex]\[ K_{\text{eq}} = \frac{[HI]^2}{[H_2][I_2]} \][/tex]
Substituting the equilibrium concentrations,
[tex]\[ 64.0 = \frac{(2x)^2}{(0.20 - x)(0.20 - x)} \][/tex]
Simplify and solve for [tex]\( x \)[/tex]:
[tex]\[ 64.0 = \frac{4x^2}{(0.20 - x)^2} \][/tex]
[tex]\[ 64.0 = \frac{4x^2}{0.04 - 0.4x + x^2} \][/tex]
[tex]\[ 64(0.04 - 0.4x + x^2) = 4x^2 \][/tex]
[tex]\[ 2.56 - 25.6x + 64x^2 = 4x^2 \][/tex]
[tex]\[ 2.56 - 25.6x + 60x^2 = 0 \][/tex]
4. Solve the Quadratic Equation:
The quadratic equation is:
[tex]\[ 60x^2 - 25.6x + 2.56 = 0 \][/tex]
Solve for [tex]\( x \)[/tex] using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]:
Here, [tex]\( a = 60 \)[/tex], [tex]\( b = -25.6 \)[/tex], and [tex]\( c = 2.56 \)[/tex].
[tex]\[ x = \frac{25.6 \pm \sqrt{(-25.6)^2 - 4 \cdot 60 \cdot 2.56}}{2 \cdot 60} \][/tex]
[tex]\[ x = \frac{25.6 \pm \sqrt{655.36 - 614.40}}{120} \][/tex]
[tex]\[ x = \frac{25.6 \pm \sqrt{40.96}}{120} \][/tex]
[tex]\[ x = \frac{25.6 \pm 6.4}{120} \][/tex]
The two solutions are:
[tex]\[ x_1 = \frac{32}{120} = \frac{8}{30} = \frac{4}{15} \approx 0.267 \, \text{M} \][/tex]
[tex]\[ x_2 = \frac{19.2}{120} = \frac{16}{100} = \frac{4}{25} = 0.16 \, \text{M} \][/tex]
Only the value [tex]\( x = 0.16 \, \text{M} \)[/tex] is physically feasible because it keeps the concentrations of [tex]\( I_2 \)[/tex] and [tex]\( H_2 \)[/tex] positive.
5. Calculate the Equilibrium Concentrations:
Using [tex]\( x = 0.16 \)[/tex]:
[tex]\[ [I_2]_{\text{eq}} = 0.20 - 0.16 = 0.04 \, \text{M} \][/tex]
[tex]\[ [H_2]_{\text{eq}} = 0.20 - 0.16 = 0.04 \, \text{M} \][/tex]
[tex]\[ [HI]_{\text{eq}} = 2 \times 0.16 = 0.32 \, \text{M} \][/tex]
### Conclusion
The equilibrium concentrations are:
[tex]\[ [I_2]_{\text{eq}} = 0.04 \, \text{M} \][/tex]
[tex]\[ [H_2]_{\text{eq}} = 0.04 \, \text{M} \][/tex]
[tex]\[ [HI]_{\text{eq}} = 0.32 \, \text{M} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.