Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
The reaction in question is:
[tex]\[ H_2 (g) + I_2 (g) \rightleftharpoons 2 HI (g) \][/tex]
We need to determine the equilibrium concentrations when 1.00 mole of [tex]\( I_2 \)[/tex] and 1.00 mole of [tex]\( H_2 \)[/tex] are placed in a 5-liter container. The equilibrium constant [tex]\( K_{\text{eq}} \)[/tex] is 64.0.
### Step-by-Step Solution:
1. Calculate Initial Concentrations:
Given:
- Initial moles of [tex]\( I_2 \)[/tex] = 1.00 mole
- Initial moles of [tex]\( H_2 \)[/tex] = 1.00 mole
- Volume of container = 5.0 liters
The initial concentrations (Molarity) are:
[tex]\[ [I_2]_{\text{initial}} = \frac{1.00 \, \text{mole}}{5.0 \, \text{L}} = 0.20 \, \text{M} \][/tex]
[tex]\[ [H_2]_{\text{initial}} = \frac{1.00 \, \text{mole}}{5.0 \, \text{L}} = 0.20 \, \text{M} \][/tex]
2. Define Change in Concentration:
Let [tex]\( x \)[/tex] be the amount of [tex]\( I_2 \)[/tex] and [tex]\( H_2 \)[/tex] reacted to form [tex]\( HI \)[/tex]. Since the stoichiometry of the balanced equation is 1:1:2, the changes in concentrations are:
[tex]\[ [I_2] = 0.20 - x \][/tex]
[tex]\[ [H_2] = 0.20 - x \][/tex]
[tex]\[ [HI] = 2x \][/tex]
3. Establish the Equilibrium Expression:
[tex]\[ K_{\text{eq}} = \frac{[HI]^2}{[H_2][I_2]} \][/tex]
Substituting the equilibrium concentrations,
[tex]\[ 64.0 = \frac{(2x)^2}{(0.20 - x)(0.20 - x)} \][/tex]
Simplify and solve for [tex]\( x \)[/tex]:
[tex]\[ 64.0 = \frac{4x^2}{(0.20 - x)^2} \][/tex]
[tex]\[ 64.0 = \frac{4x^2}{0.04 - 0.4x + x^2} \][/tex]
[tex]\[ 64(0.04 - 0.4x + x^2) = 4x^2 \][/tex]
[tex]\[ 2.56 - 25.6x + 64x^2 = 4x^2 \][/tex]
[tex]\[ 2.56 - 25.6x + 60x^2 = 0 \][/tex]
4. Solve the Quadratic Equation:
The quadratic equation is:
[tex]\[ 60x^2 - 25.6x + 2.56 = 0 \][/tex]
Solve for [tex]\( x \)[/tex] using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]:
Here, [tex]\( a = 60 \)[/tex], [tex]\( b = -25.6 \)[/tex], and [tex]\( c = 2.56 \)[/tex].
[tex]\[ x = \frac{25.6 \pm \sqrt{(-25.6)^2 - 4 \cdot 60 \cdot 2.56}}{2 \cdot 60} \][/tex]
[tex]\[ x = \frac{25.6 \pm \sqrt{655.36 - 614.40}}{120} \][/tex]
[tex]\[ x = \frac{25.6 \pm \sqrt{40.96}}{120} \][/tex]
[tex]\[ x = \frac{25.6 \pm 6.4}{120} \][/tex]
The two solutions are:
[tex]\[ x_1 = \frac{32}{120} = \frac{8}{30} = \frac{4}{15} \approx 0.267 \, \text{M} \][/tex]
[tex]\[ x_2 = \frac{19.2}{120} = \frac{16}{100} = \frac{4}{25} = 0.16 \, \text{M} \][/tex]
Only the value [tex]\( x = 0.16 \, \text{M} \)[/tex] is physically feasible because it keeps the concentrations of [tex]\( I_2 \)[/tex] and [tex]\( H_2 \)[/tex] positive.
5. Calculate the Equilibrium Concentrations:
Using [tex]\( x = 0.16 \)[/tex]:
[tex]\[ [I_2]_{\text{eq}} = 0.20 - 0.16 = 0.04 \, \text{M} \][/tex]
[tex]\[ [H_2]_{\text{eq}} = 0.20 - 0.16 = 0.04 \, \text{M} \][/tex]
[tex]\[ [HI]_{\text{eq}} = 2 \times 0.16 = 0.32 \, \text{M} \][/tex]
### Conclusion
The equilibrium concentrations are:
[tex]\[ [I_2]_{\text{eq}} = 0.04 \, \text{M} \][/tex]
[tex]\[ [H_2]_{\text{eq}} = 0.04 \, \text{M} \][/tex]
[tex]\[ [HI]_{\text{eq}} = 0.32 \, \text{M} \][/tex]
[tex]\[ H_2 (g) + I_2 (g) \rightleftharpoons 2 HI (g) \][/tex]
We need to determine the equilibrium concentrations when 1.00 mole of [tex]\( I_2 \)[/tex] and 1.00 mole of [tex]\( H_2 \)[/tex] are placed in a 5-liter container. The equilibrium constant [tex]\( K_{\text{eq}} \)[/tex] is 64.0.
### Step-by-Step Solution:
1. Calculate Initial Concentrations:
Given:
- Initial moles of [tex]\( I_2 \)[/tex] = 1.00 mole
- Initial moles of [tex]\( H_2 \)[/tex] = 1.00 mole
- Volume of container = 5.0 liters
The initial concentrations (Molarity) are:
[tex]\[ [I_2]_{\text{initial}} = \frac{1.00 \, \text{mole}}{5.0 \, \text{L}} = 0.20 \, \text{M} \][/tex]
[tex]\[ [H_2]_{\text{initial}} = \frac{1.00 \, \text{mole}}{5.0 \, \text{L}} = 0.20 \, \text{M} \][/tex]
2. Define Change in Concentration:
Let [tex]\( x \)[/tex] be the amount of [tex]\( I_2 \)[/tex] and [tex]\( H_2 \)[/tex] reacted to form [tex]\( HI \)[/tex]. Since the stoichiometry of the balanced equation is 1:1:2, the changes in concentrations are:
[tex]\[ [I_2] = 0.20 - x \][/tex]
[tex]\[ [H_2] = 0.20 - x \][/tex]
[tex]\[ [HI] = 2x \][/tex]
3. Establish the Equilibrium Expression:
[tex]\[ K_{\text{eq}} = \frac{[HI]^2}{[H_2][I_2]} \][/tex]
Substituting the equilibrium concentrations,
[tex]\[ 64.0 = \frac{(2x)^2}{(0.20 - x)(0.20 - x)} \][/tex]
Simplify and solve for [tex]\( x \)[/tex]:
[tex]\[ 64.0 = \frac{4x^2}{(0.20 - x)^2} \][/tex]
[tex]\[ 64.0 = \frac{4x^2}{0.04 - 0.4x + x^2} \][/tex]
[tex]\[ 64(0.04 - 0.4x + x^2) = 4x^2 \][/tex]
[tex]\[ 2.56 - 25.6x + 64x^2 = 4x^2 \][/tex]
[tex]\[ 2.56 - 25.6x + 60x^2 = 0 \][/tex]
4. Solve the Quadratic Equation:
The quadratic equation is:
[tex]\[ 60x^2 - 25.6x + 2.56 = 0 \][/tex]
Solve for [tex]\( x \)[/tex] using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]:
Here, [tex]\( a = 60 \)[/tex], [tex]\( b = -25.6 \)[/tex], and [tex]\( c = 2.56 \)[/tex].
[tex]\[ x = \frac{25.6 \pm \sqrt{(-25.6)^2 - 4 \cdot 60 \cdot 2.56}}{2 \cdot 60} \][/tex]
[tex]\[ x = \frac{25.6 \pm \sqrt{655.36 - 614.40}}{120} \][/tex]
[tex]\[ x = \frac{25.6 \pm \sqrt{40.96}}{120} \][/tex]
[tex]\[ x = \frac{25.6 \pm 6.4}{120} \][/tex]
The two solutions are:
[tex]\[ x_1 = \frac{32}{120} = \frac{8}{30} = \frac{4}{15} \approx 0.267 \, \text{M} \][/tex]
[tex]\[ x_2 = \frac{19.2}{120} = \frac{16}{100} = \frac{4}{25} = 0.16 \, \text{M} \][/tex]
Only the value [tex]\( x = 0.16 \, \text{M} \)[/tex] is physically feasible because it keeps the concentrations of [tex]\( I_2 \)[/tex] and [tex]\( H_2 \)[/tex] positive.
5. Calculate the Equilibrium Concentrations:
Using [tex]\( x = 0.16 \)[/tex]:
[tex]\[ [I_2]_{\text{eq}} = 0.20 - 0.16 = 0.04 \, \text{M} \][/tex]
[tex]\[ [H_2]_{\text{eq}} = 0.20 - 0.16 = 0.04 \, \text{M} \][/tex]
[tex]\[ [HI]_{\text{eq}} = 2 \times 0.16 = 0.32 \, \text{M} \][/tex]
### Conclusion
The equilibrium concentrations are:
[tex]\[ [I_2]_{\text{eq}} = 0.04 \, \text{M} \][/tex]
[tex]\[ [H_2]_{\text{eq}} = 0.04 \, \text{M} \][/tex]
[tex]\[ [HI]_{\text{eq}} = 0.32 \, \text{M} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.