Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which statements are true about the circle given by the equation [tex]\(x^2 + y^2 + 4x - 6y - 36 = 0\)[/tex], let's convert it to the standard form of the equation of a circle.
### Step-by-Step Solution:
1. Starting Equation:
The given equation is:
[tex]\[ x^2 + y^2 + 4x - 6y - 36 = 0 \][/tex]
2. Move the Constant Term to the Right Side:
To complete the square later, isolate the constant term on the right side.
[tex]\[ x^2 + y^2 + 4x -6 y = 36 \][/tex]
3. Complete the Square for the [tex]\(x\)[/tex] Terms:
- For [tex]\(x^2 + 4x\)[/tex], add and subtract 4 (since [tex]\((4/2)^2 = 4\)[/tex]):
[tex]\[ x^2 + 4x = (x + 2)^2 - 4 \][/tex]
4. Complete the Square for the [tex]\(y\)[/tex] Terms:
- For [tex]\(y^2 - 6y\)[/tex], add and subtract 9 (since [tex]\((-6/2)^2 = 9\)[/tex]):
[tex]\[ y^2 - 6y = (y - 3)^2 - 9 \][/tex]
5. Incorporate These into the Equation:
Substitute the completed squares back into the equation:
[tex]\[ (x + 2)^2 - 4 + (y - 3)^2 - 9 = 36 \][/tex]
6. Simplify the Expression:
Combine the constants on the right side:
[tex]\[ (x + 2)^2 + (y - 3)^2 - 13 = 36 \][/tex]
[tex]\[ (x + 2)^2 + (y - 3)^2 = 49 \][/tex]
7. Standard Form of the Circle:
The equation [tex]\((x + 2)^2 + (y - 3)^2 = 49\)[/tex] is in standard form.
8. Identify the Center and Radius:
- The center of the circle [tex]\((h, k)\)[/tex] is [tex]\((-2, 3)\)[/tex].
- The radius [tex]\(r\)[/tex] is given by [tex]\(\sqrt{49} = 7\)[/tex] units.
### Correct Statements:
Considering the choices provided:
1. "To begin converting the equation to standard form, subtract 36 from both sides." - This is incorrect. We actually isolate the constant term.
2. "To complete the square for the [tex]\(x\)[/tex] terms, add 4 to both sides." - Correct, since completing the square for [tex]\(x^2 + 4x\)[/tex] involves adding 4.
3. "The center of the circle is at [tex]\((-2, 3)\)[/tex]." - Correct.
4. "The center of the circle is at [tex]\((4, -6)\)[/tex]." - Incorrect.
5. "The radius of the circle is 6 units." - Incorrect. The radius is not 6 units.
6. "The radius of the circle is 49 units." - Incorrect. The radius is not 49 units; it is [tex]\(\sqrt{49} = 7\)[/tex] units.
### Final Correct Statements:
- "To complete the square for the [tex]\(x\)[/tex] terms, add 4 to both sides."
- "The center of the circle is at [tex]\((-2, 3)\)[/tex]."
These are the statements that are accurate based on the conversion of the given equation to the standard form of a circle.
### Step-by-Step Solution:
1. Starting Equation:
The given equation is:
[tex]\[ x^2 + y^2 + 4x - 6y - 36 = 0 \][/tex]
2. Move the Constant Term to the Right Side:
To complete the square later, isolate the constant term on the right side.
[tex]\[ x^2 + y^2 + 4x -6 y = 36 \][/tex]
3. Complete the Square for the [tex]\(x\)[/tex] Terms:
- For [tex]\(x^2 + 4x\)[/tex], add and subtract 4 (since [tex]\((4/2)^2 = 4\)[/tex]):
[tex]\[ x^2 + 4x = (x + 2)^2 - 4 \][/tex]
4. Complete the Square for the [tex]\(y\)[/tex] Terms:
- For [tex]\(y^2 - 6y\)[/tex], add and subtract 9 (since [tex]\((-6/2)^2 = 9\)[/tex]):
[tex]\[ y^2 - 6y = (y - 3)^2 - 9 \][/tex]
5. Incorporate These into the Equation:
Substitute the completed squares back into the equation:
[tex]\[ (x + 2)^2 - 4 + (y - 3)^2 - 9 = 36 \][/tex]
6. Simplify the Expression:
Combine the constants on the right side:
[tex]\[ (x + 2)^2 + (y - 3)^2 - 13 = 36 \][/tex]
[tex]\[ (x + 2)^2 + (y - 3)^2 = 49 \][/tex]
7. Standard Form of the Circle:
The equation [tex]\((x + 2)^2 + (y - 3)^2 = 49\)[/tex] is in standard form.
8. Identify the Center and Radius:
- The center of the circle [tex]\((h, k)\)[/tex] is [tex]\((-2, 3)\)[/tex].
- The radius [tex]\(r\)[/tex] is given by [tex]\(\sqrt{49} = 7\)[/tex] units.
### Correct Statements:
Considering the choices provided:
1. "To begin converting the equation to standard form, subtract 36 from both sides." - This is incorrect. We actually isolate the constant term.
2. "To complete the square for the [tex]\(x\)[/tex] terms, add 4 to both sides." - Correct, since completing the square for [tex]\(x^2 + 4x\)[/tex] involves adding 4.
3. "The center of the circle is at [tex]\((-2, 3)\)[/tex]." - Correct.
4. "The center of the circle is at [tex]\((4, -6)\)[/tex]." - Incorrect.
5. "The radius of the circle is 6 units." - Incorrect. The radius is not 6 units.
6. "The radius of the circle is 49 units." - Incorrect. The radius is not 49 units; it is [tex]\(\sqrt{49} = 7\)[/tex] units.
### Final Correct Statements:
- "To complete the square for the [tex]\(x\)[/tex] terms, add 4 to both sides."
- "The center of the circle is at [tex]\((-2, 3)\)[/tex]."
These are the statements that are accurate based on the conversion of the given equation to the standard form of a circle.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.