Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Question

Find the [tex]\( x \)[/tex]-intercepts and [tex]\( y \)[/tex]-intercept of the following function:

[tex]\[ f(x) = (x-3)(x-1)(x+3) \][/tex]

Write your answer in coordinate pairs of the form [tex]\((x, y)\)[/tex].

Sagot :

To find the [tex]$x$[/tex]-intercepts and the [tex]$y$[/tex]-intercept of the function [tex]\( f(x) = (x-3)(x-1)(x+3) \)[/tex], we'll proceed step-by-step.

### Step 1: Finding the [tex]$x$[/tex]-Intercepts
The [tex]$x$[/tex]-intercepts occur where the function [tex]\( f(x) \)[/tex] equals zero. That is, we need to solve the equation:
[tex]\[ (x-3)(x-1)(x+3) = 0 \][/tex]
For the product of these factors to equal zero, at least one of the factors must be zero. Therefore, we solve each factor individually:
[tex]\[ x - 3 = 0 \quad \Rightarrow \quad x = 3 \][/tex]
[tex]\[ x - 1 = 0 \quad \Rightarrow \quad x = 1 \][/tex]
[tex]\[ x + 3 = 0 \quad \Rightarrow \quad x = -3 \][/tex]
Thus, the [tex]$x$[/tex]-intercepts are at the points [tex]\((3, 0)\)[/tex], [tex]\((1, 0)\)[/tex], and [tex]\((-3, 0)\)[/tex].

### Step 2: Finding the [tex]$y$[/tex]-Intercept
The [tex]$y$[/tex]-intercept occurs where [tex]\( x = 0 \)[/tex]. We need to evaluate the function [tex]\( f(x) \)[/tex] at [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = (0-3)(0-1)(0+3) \][/tex]
Calculating inside the parentheses:
[tex]\[ f(0) = (-3)(-1)(3) \][/tex]
Multiplying these values together:
[tex]\[ f(0) = (-3) \times (-1) \times 3 = 9 \][/tex]
Therefore, the [tex]$y$[/tex]-intercept is at the point [tex]\((0, 9)\)[/tex].

### Summary
The [tex]$x$[/tex]-intercepts and [tex]$y$[/tex]-intercept of the function [tex]\( f(x) = (x-3)(x-1)(x+3) \)[/tex] are:

- [tex]$x$[/tex]-intercepts: [tex]\((-3, 0)\)[/tex], [tex]\((1, 0)\)[/tex], [tex]\((3, 0)\)[/tex]
- [tex]$y$[/tex]-intercept: [tex]\((0, 9)\)[/tex]

These are the coordinate pairs where the function intersects the respective axes.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.