Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Certainly! Let's solve this problem step by step.
### Given Information:
1. Gravitational Force (F) between two asteroids: [tex]\( F = 6.2 \times 10^8 \, \text{N} \)[/tex]
2. Distance (d) between the asteroids: [tex]\( d = 2100 \, \text{km} = 2100 \times 10^3 \, \text{m} \)[/tex]
3. Gravitational Constant (G): [tex]\( G = 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex]
4. Mass Relationship: Mass of asteroid [tex]\( Y \)[/tex] [tex]\( (M_y) \)[/tex] is 3 times the mass of asteroid [tex]\( Z \)[/tex] [tex]\( (M_z) \)[/tex], i.e., [tex]\( M_y = 3 \times M_z \)[/tex]
### Gravitational Force Formula:
The formula for the gravitational force between two masses is given by:
[tex]\[ F = \frac{G \cdot M_y \cdot M_z}{d^2} \][/tex]
### Substituting [tex]\( M_y = 3 \times M_z \)[/tex] into the formula:
[tex]\[ F = \frac{G \cdot (3 \times M_z) \cdot M_z}{d^2} \][/tex]
[tex]\[ F = \frac{3 \cdot G \cdot M_z^2}{d^2} \][/tex]
### Solving for [tex]\( M_z \)[/tex]:
1. Multiply both sides by [tex]\( d^2 \)[/tex]:
[tex]\[ F \cdot d^2 = 3 \cdot G \cdot M_z^2 \][/tex]
2. Isolate [tex]\( M_z^2 \)[/tex]:
[tex]\[ M_z^2 = \frac{F \cdot d^2}{3 \cdot G} \][/tex]
3. Plugging in the known values:
[tex]\[ M_z^2 = \frac{6.2 \times 10^8 \times (2100 \times 10^3)^2}{3 \times 6.67430 \times 10^{-11}} \][/tex]
### Calculating [tex]\( M_z \)[/tex]:
[tex]\[ M_z^2 \approx 1.3655364607524388 \times 10^{31} \][/tex]
So, the mass of asteroid [tex]\( Z \)[/tex]:
[tex]\[ M_z \approx \sqrt{1.3655364607524388 \times 10^{31}} \][/tex]
[tex]\[ M_z \approx 3695316577442911.0 \, \text{kg} \][/tex]
### Mass of Asteroid [tex]\( Y \)[/tex]:
Since [tex]\( M_y = 3 \times M_z \)[/tex]:
[tex]\[ M_y = 3 \times 3695316577442911.0 \, \text{kg} \][/tex]
[tex]\[ M_y \approx 1.1085949732328732 \times 10^{16} \, \text{kg} \][/tex]
Thus, the mass of asteroid [tex]\( Y \)[/tex] is [tex]\( 1.1 \times 10^{16} \, \text{kg} \)[/tex].
### Answer:
[tex]\[ \boxed{1.1 \times 10^{16} \, \text{kg}} \][/tex]
### Given Information:
1. Gravitational Force (F) between two asteroids: [tex]\( F = 6.2 \times 10^8 \, \text{N} \)[/tex]
2. Distance (d) between the asteroids: [tex]\( d = 2100 \, \text{km} = 2100 \times 10^3 \, \text{m} \)[/tex]
3. Gravitational Constant (G): [tex]\( G = 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex]
4. Mass Relationship: Mass of asteroid [tex]\( Y \)[/tex] [tex]\( (M_y) \)[/tex] is 3 times the mass of asteroid [tex]\( Z \)[/tex] [tex]\( (M_z) \)[/tex], i.e., [tex]\( M_y = 3 \times M_z \)[/tex]
### Gravitational Force Formula:
The formula for the gravitational force between two masses is given by:
[tex]\[ F = \frac{G \cdot M_y \cdot M_z}{d^2} \][/tex]
### Substituting [tex]\( M_y = 3 \times M_z \)[/tex] into the formula:
[tex]\[ F = \frac{G \cdot (3 \times M_z) \cdot M_z}{d^2} \][/tex]
[tex]\[ F = \frac{3 \cdot G \cdot M_z^2}{d^2} \][/tex]
### Solving for [tex]\( M_z \)[/tex]:
1. Multiply both sides by [tex]\( d^2 \)[/tex]:
[tex]\[ F \cdot d^2 = 3 \cdot G \cdot M_z^2 \][/tex]
2. Isolate [tex]\( M_z^2 \)[/tex]:
[tex]\[ M_z^2 = \frac{F \cdot d^2}{3 \cdot G} \][/tex]
3. Plugging in the known values:
[tex]\[ M_z^2 = \frac{6.2 \times 10^8 \times (2100 \times 10^3)^2}{3 \times 6.67430 \times 10^{-11}} \][/tex]
### Calculating [tex]\( M_z \)[/tex]:
[tex]\[ M_z^2 \approx 1.3655364607524388 \times 10^{31} \][/tex]
So, the mass of asteroid [tex]\( Z \)[/tex]:
[tex]\[ M_z \approx \sqrt{1.3655364607524388 \times 10^{31}} \][/tex]
[tex]\[ M_z \approx 3695316577442911.0 \, \text{kg} \][/tex]
### Mass of Asteroid [tex]\( Y \)[/tex]:
Since [tex]\( M_y = 3 \times M_z \)[/tex]:
[tex]\[ M_y = 3 \times 3695316577442911.0 \, \text{kg} \][/tex]
[tex]\[ M_y \approx 1.1085949732328732 \times 10^{16} \, \text{kg} \][/tex]
Thus, the mass of asteroid [tex]\( Y \)[/tex] is [tex]\( 1.1 \times 10^{16} \, \text{kg} \)[/tex].
### Answer:
[tex]\[ \boxed{1.1 \times 10^{16} \, \text{kg}} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.