akriaras
Answered

Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

The gravitational force between two asteroids is [tex]6.2 \times 10^8 \, N[/tex]. Asteroid Y has three times the mass of asteroid Z. If the distance between the asteroids is 2100 kilometers, what is the mass of asteroid Y?

A. [tex]3.7 \times 10^{15} \, kg[/tex]
B. [tex]1.1 \times 10^{16} \, kg[/tex]
C. [tex]1.4 \times 10^{31} \, kg[/tex]
D. [tex]4.1 \times 10^{31} \, kg[/tex]

Sagot :

Certainly! Let's solve this problem step by step.

### Given Information:
1. Gravitational Force (F) between two asteroids: [tex]\( F = 6.2 \times 10^8 \, \text{N} \)[/tex]
2. Distance (d) between the asteroids: [tex]\( d = 2100 \, \text{km} = 2100 \times 10^3 \, \text{m} \)[/tex]
3. Gravitational Constant (G): [tex]\( G = 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex]
4. Mass Relationship: Mass of asteroid [tex]\( Y \)[/tex] [tex]\( (M_y) \)[/tex] is 3 times the mass of asteroid [tex]\( Z \)[/tex] [tex]\( (M_z) \)[/tex], i.e., [tex]\( M_y = 3 \times M_z \)[/tex]

### Gravitational Force Formula:
The formula for the gravitational force between two masses is given by:
[tex]\[ F = \frac{G \cdot M_y \cdot M_z}{d^2} \][/tex]

### Substituting [tex]\( M_y = 3 \times M_z \)[/tex] into the formula:
[tex]\[ F = \frac{G \cdot (3 \times M_z) \cdot M_z}{d^2} \][/tex]
[tex]\[ F = \frac{3 \cdot G \cdot M_z^2}{d^2} \][/tex]

### Solving for [tex]\( M_z \)[/tex]:
1. Multiply both sides by [tex]\( d^2 \)[/tex]:
[tex]\[ F \cdot d^2 = 3 \cdot G \cdot M_z^2 \][/tex]

2. Isolate [tex]\( M_z^2 \)[/tex]:
[tex]\[ M_z^2 = \frac{F \cdot d^2}{3 \cdot G} \][/tex]

3. Plugging in the known values:
[tex]\[ M_z^2 = \frac{6.2 \times 10^8 \times (2100 \times 10^3)^2}{3 \times 6.67430 \times 10^{-11}} \][/tex]

### Calculating [tex]\( M_z \)[/tex]:
[tex]\[ M_z^2 \approx 1.3655364607524388 \times 10^{31} \][/tex]
So, the mass of asteroid [tex]\( Z \)[/tex]:
[tex]\[ M_z \approx \sqrt{1.3655364607524388 \times 10^{31}} \][/tex]
[tex]\[ M_z \approx 3695316577442911.0 \, \text{kg} \][/tex]

### Mass of Asteroid [tex]\( Y \)[/tex]:
Since [tex]\( M_y = 3 \times M_z \)[/tex]:
[tex]\[ M_y = 3 \times 3695316577442911.0 \, \text{kg} \][/tex]
[tex]\[ M_y \approx 1.1085949732328732 \times 10^{16} \, \text{kg} \][/tex]

Thus, the mass of asteroid [tex]\( Y \)[/tex] is [tex]\( 1.1 \times 10^{16} \, \text{kg} \)[/tex].

### Answer:
[tex]\[ \boxed{1.1 \times 10^{16} \, \text{kg}} \][/tex]