Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To express [tex]\(\frac{1}{2} \log a + 3 \log b \)[/tex] as a single logarithm and simplify it, follow these steps:
1. Identify the given logarithmic expressions:
[tex]\[ \frac{1}{2} \log(a) \quad \text{and} \quad 3 \log(b). \][/tex]
2. Apply the power rule of logarithms, which states that [tex]\( k \log(x) = \log(x^k) \)[/tex].
For [tex]\(\frac{1}{2} \log(a)\)[/tex], we have:
[tex]\[ \frac{1}{2} \log(a) = \log(a^{\frac{1}{2}}). \][/tex]
For [tex]\(3 \log(b)\)[/tex], we have:
[tex]\[ 3 \log(b) = \log(b^3). \][/tex]
3. Combine the logarithmic expressions using the logarithm addition rule, which states that [tex]\( \log(x) + \log(y) = \log(xy) \)[/tex].
Thus, we combine [tex]\(\log(a^{\frac{1}{2}})\)[/tex] and [tex]\(\log(b^3)\)[/tex]:
[tex]\[ \log(a^{\frac{1}{2}}) + \log(b^3) = \log(a^{\frac{1}{2}} \cdot b^3). \][/tex]
4. Simplify the expression if necessary. In this case, the expression is already simplified.
Therefore, the expression [tex]\(\frac{1}{2} \log a + 3 \log b\)[/tex] as a single logarithm is:
[tex]\[ \boxed{\log(a^{\frac{1}{2}} \cdot b^3)}. \][/tex]
1. Identify the given logarithmic expressions:
[tex]\[ \frac{1}{2} \log(a) \quad \text{and} \quad 3 \log(b). \][/tex]
2. Apply the power rule of logarithms, which states that [tex]\( k \log(x) = \log(x^k) \)[/tex].
For [tex]\(\frac{1}{2} \log(a)\)[/tex], we have:
[tex]\[ \frac{1}{2} \log(a) = \log(a^{\frac{1}{2}}). \][/tex]
For [tex]\(3 \log(b)\)[/tex], we have:
[tex]\[ 3 \log(b) = \log(b^3). \][/tex]
3. Combine the logarithmic expressions using the logarithm addition rule, which states that [tex]\( \log(x) + \log(y) = \log(xy) \)[/tex].
Thus, we combine [tex]\(\log(a^{\frac{1}{2}})\)[/tex] and [tex]\(\log(b^3)\)[/tex]:
[tex]\[ \log(a^{\frac{1}{2}}) + \log(b^3) = \log(a^{\frac{1}{2}} \cdot b^3). \][/tex]
4. Simplify the expression if necessary. In this case, the expression is already simplified.
Therefore, the expression [tex]\(\frac{1}{2} \log a + 3 \log b\)[/tex] as a single logarithm is:
[tex]\[ \boxed{\log(a^{\frac{1}{2}} \cdot b^3)}. \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.