At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

The town librarian bought a combination of new-release movies on DVD for [tex]$\$[/tex]20[tex]$ and classic movies on DVD for $[/tex]\[tex]$8$[/tex]. Let [tex]$x$[/tex] represent the number of new releases, and let [tex]$y$[/tex] represent the number of classics. If the librarian had a budget of [tex]$\$[/tex]500[tex]$ and wanted to purchase as many DVDs as possible, which values of $[/tex]x[tex]$ and $[/tex]y[tex]$ could represent the number of new-release and classic movies bought?

A. $[/tex]x=8, y=45[tex]$
B. $[/tex]x=10, y=22[tex]$
C. $[/tex]x=16, y=22[tex]$
D. $[/tex]x=18, y=18$


Sagot :

To determine which combination of new-release movies (x) and classic movies (y) fits the librarian's budget of [tex]$500, we need to calculate the total cost for each given pair \((x, y)\), and then check if the total cost is within the budget of $[/tex]500.

The cost formula can be represented as:
[tex]\[ \text{Total Cost} = 20x + 8y \][/tex]

Let's calculate the costs for each combination:

1. For [tex]\( x = 8 \)[/tex] and [tex]\( y = 45 \)[/tex]:
[tex]\[ \text{Total Cost} = 20 \cdot 8 + 8 \cdot 45 = 160 + 360 = 520 \][/tex]
The total cost is [tex]$520, which is above the budget of $[/tex]500. Hence, this combination is not within the budget.

2. For [tex]\( x = 10 \)[/tex] and [tex]\( y = 22 \)[/tex]:
[tex]\[ \text{Total Cost} = 20 \cdot 10 + 8 \cdot 22 = 200 + 176 = 376 \][/tex]
The total cost is [tex]$376, which is within the budget of $[/tex]500. Hence, this combination is within the budget.

3. For [tex]\( x = 16 \)[/tex] and [tex]\( y = 22 \)[/tex]:
[tex]\[ \text{Total Cost} = 20 \cdot 16 + 8 \cdot 22 = 320 + 176 = 496 \][/tex]
The total cost is [tex]$496, which is within the budget of $[/tex]500. Hence, this combination is within the budget.

4. For [tex]\( x = 18 \)[/tex] and [tex]\( y = 18 \)[/tex]:
[tex]\[ \text{Total Cost} = 20 \cdot 18 + 8 \cdot 18 = 360 + 144 = 504 \][/tex]
The total cost is [tex]$504, which is above the budget of $[/tex]500. Hence, this combination is not within the budget.

Summarizing the results:

- The combination [tex]\( (x = 8, y = 45) \)[/tex] is above the budget.
- The combination [tex]\( (x = 10, y = 22) \)[/tex] is within the budget.
- The combination [tex]\( (x = 16, y = 22) \)[/tex] is within the budget.
- The combination [tex]\( (x = 18, y = 18) \)[/tex] is above the budget.

Therefore, the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] that meet the budget constraint are:
[tex]\[ x = 10, y = 22 \][/tex]
and
[tex]\[ x = 16, y = 22 \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.