At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which monomials are perfect cubes, we need to check if the coefficients (1, 3, 6, 9) are perfect cubes. A perfect cube is a number that can be expressed as the cube of an integer. Let's examine each coefficient one by one.
1. Checking 1:
- [tex]\(1 = 1^3\)[/tex]
- The integer 1 cubed is indeed 1, so 1 is a perfect cube.
2. Checking 3:
- The cube of an integer closest to 3 would be [tex]\(1^3 = 1\)[/tex] and [tex]\(2^3 = 8\)[/tex]. Since there's no integer value for which the cube is exactly 3, 3 is not a perfect cube.
3. Checking 6:
- The cube of an integer closest to 6 would be [tex]\(1^3 = 1\)[/tex] and [tex]\(2^3 = 8\)[/tex]. Since there's no integer value for which the cube is exactly 6, 6 is not a perfect cube.
4. Checking 9:
- The cube of an integer closest to 9 would be [tex]\(2^3 = 8\)[/tex] and [tex]\(3^3 = 27\)[/tex]. Since there's no integer value for which the cube is exactly 9, 9 is not a perfect cube.
After evaluating each coefficient, we determine that only the number 1 is a perfect cube.
Therefore, the monomial that is a perfect cube is:
[tex]\[ 1 x^3 \][/tex]
1. Checking 1:
- [tex]\(1 = 1^3\)[/tex]
- The integer 1 cubed is indeed 1, so 1 is a perfect cube.
2. Checking 3:
- The cube of an integer closest to 3 would be [tex]\(1^3 = 1\)[/tex] and [tex]\(2^3 = 8\)[/tex]. Since there's no integer value for which the cube is exactly 3, 3 is not a perfect cube.
3. Checking 6:
- The cube of an integer closest to 6 would be [tex]\(1^3 = 1\)[/tex] and [tex]\(2^3 = 8\)[/tex]. Since there's no integer value for which the cube is exactly 6, 6 is not a perfect cube.
4. Checking 9:
- The cube of an integer closest to 9 would be [tex]\(2^3 = 8\)[/tex] and [tex]\(3^3 = 27\)[/tex]. Since there's no integer value for which the cube is exactly 9, 9 is not a perfect cube.
After evaluating each coefficient, we determine that only the number 1 is a perfect cube.
Therefore, the monomial that is a perfect cube is:
[tex]\[ 1 x^3 \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.