Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which monomials are perfect cubes, we need to check if the coefficients (1, 3, 6, 9) are perfect cubes. A perfect cube is a number that can be expressed as the cube of an integer. Let's examine each coefficient one by one.
1. Checking 1:
- [tex]\(1 = 1^3\)[/tex]
- The integer 1 cubed is indeed 1, so 1 is a perfect cube.
2. Checking 3:
- The cube of an integer closest to 3 would be [tex]\(1^3 = 1\)[/tex] and [tex]\(2^3 = 8\)[/tex]. Since there's no integer value for which the cube is exactly 3, 3 is not a perfect cube.
3. Checking 6:
- The cube of an integer closest to 6 would be [tex]\(1^3 = 1\)[/tex] and [tex]\(2^3 = 8\)[/tex]. Since there's no integer value for which the cube is exactly 6, 6 is not a perfect cube.
4. Checking 9:
- The cube of an integer closest to 9 would be [tex]\(2^3 = 8\)[/tex] and [tex]\(3^3 = 27\)[/tex]. Since there's no integer value for which the cube is exactly 9, 9 is not a perfect cube.
After evaluating each coefficient, we determine that only the number 1 is a perfect cube.
Therefore, the monomial that is a perfect cube is:
[tex]\[ 1 x^3 \][/tex]
1. Checking 1:
- [tex]\(1 = 1^3\)[/tex]
- The integer 1 cubed is indeed 1, so 1 is a perfect cube.
2. Checking 3:
- The cube of an integer closest to 3 would be [tex]\(1^3 = 1\)[/tex] and [tex]\(2^3 = 8\)[/tex]. Since there's no integer value for which the cube is exactly 3, 3 is not a perfect cube.
3. Checking 6:
- The cube of an integer closest to 6 would be [tex]\(1^3 = 1\)[/tex] and [tex]\(2^3 = 8\)[/tex]. Since there's no integer value for which the cube is exactly 6, 6 is not a perfect cube.
4. Checking 9:
- The cube of an integer closest to 9 would be [tex]\(2^3 = 8\)[/tex] and [tex]\(3^3 = 27\)[/tex]. Since there's no integer value for which the cube is exactly 9, 9 is not a perfect cube.
After evaluating each coefficient, we determine that only the number 1 is a perfect cube.
Therefore, the monomial that is a perfect cube is:
[tex]\[ 1 x^3 \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.